Cargando…
DNA Length-dependent Division of a Giant Vesicle-based Model Protocell
DNA is an essential carrier of sequence-based genetic information for all life today. However, the chemical and physical properties of DNA may also affect the structure and dynamics of a vesicle-based model protocell in which it is encapsulated. To test these effects, we constructed a polyethylene g...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502804/ https://www.ncbi.nlm.nih.gov/pubmed/31061467 http://dx.doi.org/10.1038/s41598-019-43367-4 |
Sumario: | DNA is an essential carrier of sequence-based genetic information for all life today. However, the chemical and physical properties of DNA may also affect the structure and dynamics of a vesicle-based model protocell in which it is encapsulated. To test these effects, we constructed a polyethylene glycol-grafted giant vesicle system capable of undergoing growth and division. The system incorporates a specific interaction between DNA and lipophilic catalysts as well as components of PCR. We found that vesicle division depends on the length of the encapsulated DNA, and the self-assembly of an internal supramolecular catalyst possibly leads to the direct causal relationship between DNA length and the capacity of the vesicle to self-reproduce. These results may help elucidate how nucleic acids could have functioned in the division of prebiotic protocells. |
---|