Cargando…

Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region

Porous silicon one-dimensional photonic crystals (PSi-1DPCs) are capable of sensing solutions and liquids based on the smallest variation of the refractive indices. In the present work, we present a novel metal/PSi-1DPC as a liquid sensor based on Tamm/Fano resonances. The operating wavelength range...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Ashour M., Mehaney, Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502859/
https://www.ncbi.nlm.nih.gov/pubmed/31061422
http://dx.doi.org/10.1038/s41598-019-43440-y
Descripción
Sumario:Porous silicon one-dimensional photonic crystals (PSi-1DPCs) are capable of sensing solutions and liquids based on the smallest variation of the refractive indices. In the present work, we present a novel metal/PSi-1DPC as a liquid sensor based on Tamm/Fano resonances. The operating wavelength range is from 6.35 to 9.85 μm in the mid-infrared (MIR) spectral region. Different metals (Al, Ag, Au, and Pt) are attached to the top surface of the PSi-1DPCs structure to show Tamm/Fano resonances more clearly. To the best of our knowledge, it is the first time that Tamm/Fano resonances exhibit simultaneously in PSi-1DPCs within the same structure. The reflection spectra were calculated for the metal/PSi-1DPC structure by using the transfer matrix method (TMM) and the Bruggeman’s effective medium approximation (BEMA). The simulations show that the Tamm/Fano resonances are red-shifted towards the higher wavelengths with increasing the refractive index of the pores. The Ag/PSi-1DPC sensor showed the highest performance. Its sensitivity can be reached to the value 5018 nm/RIU with a high-quality factor of about 2149.27. We predict the proposed sensors can be easily fabricated and we expect them to show higher performance than other reported sensors of this type. Therefore, it will be of interest in the field of optical sensing in different fields.