Cargando…

Blueprint for nanoscale NMR

Nitrogen vacancy (NV) centers in diamond have been used as ultrasensitive magnetometers to perform nuclear magnetic resonance (NMR) spectroscopy of statistically polarized samples at 1–100 nm length scales. However, the spectral linewidth is typically limited to the kHz level, both by the NV sensor...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwartz, Ilai, Rosskopf, Joachim, Schmitt, Simon, Tratzmiller, Benedikt, Chen, Qiong, McGuinness, Liam P., Jelezko, Fedor, Plenio, Martin B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502870/
https://www.ncbi.nlm.nih.gov/pubmed/31061430
http://dx.doi.org/10.1038/s41598-019-43404-2
Descripción
Sumario:Nitrogen vacancy (NV) centers in diamond have been used as ultrasensitive magnetometers to perform nuclear magnetic resonance (NMR) spectroscopy of statistically polarized samples at 1–100 nm length scales. However, the spectral linewidth is typically limited to the kHz level, both by the NV sensor coherence time and by rapid molecular diffusion of the nuclei through the detection volume which in turn is critical for achieving long nuclear coherence times. Here we provide a blueprint supported by detailed theoretical analysis for a set-up that combines a sensitivity sufficient for detecting NMR signals from nano- to micron-scale samples with a spectral resolution that is limited only by the nuclear spin coherence, i.e. comparable to conventional NMR. Our protocol detects the nuclear polarization induced along the direction of an external magnetic field with near surface NV centers using lock-in detection techniques to enable phase coherent signal averaging. Using the NV centers in a dual role of NMR detector and optical hyperpolarization source to increase signal to noise, and in combination with Bayesian inference models for signal processing, nano/microscale NMR spectroscopy can be performed on sample concentrations in the micromolar range, several orders of magnitude better than the current state of the art.