Cargando…

Comparative analysis of differentially expressed genes between the ovaries from pregnant and nonpregnant goats using RNA-Seq

BACKGROUND: A multitude of genes tightly regulate ovarian follicular development and hormone secretion. These complex and coordinated biological processes are altered during pregnancy. In order to further understand the regulatory role of these genes during pregnancy, it is important to screen the d...

Descripción completa

Detalles Bibliográficos
Autores principales: Quan, Qing, Zheng, Qi, Ling, Yinghui, Fang, Fugui, Chu, Mingxing, Zhang, Xiaorong, Liu, Yong, Li, Wenyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503366/
https://www.ncbi.nlm.nih.gov/pubmed/31080783
http://dx.doi.org/10.1186/s40709-019-0095-9
Descripción
Sumario:BACKGROUND: A multitude of genes tightly regulate ovarian follicular development and hormone secretion. These complex and coordinated biological processes are altered during pregnancy. In order to further understand the regulatory role of these genes during pregnancy, it is important to screen the differentially expressed genes (DEGs) in the ovaries of pregnant and nonpregnant mammals. To detect the genes associated with the development of pregnancy in goats, DEGs from the ovaries from pregnant and nonpregnant Anhui white goats (pAWGs and nAWGs, respectively) were analyzed using RNA sequencing technology (RNA-Seq). RESULTS: In this study, 13,676,394 and 13,549,560 clean reads were generated from pAWGs and nAWGs, respectively, and 1724 DEGs were identified between the two libraries. Compared with nAWGs, 1033 genes were upregulated and 691 genes were downregulated in pAWGs, including PGR, PRLR, STAR and CYP19A1, which play important roles in goat reproduction. Gene Ontology analysis showed that the DEGs were enriched for 49 functional GO terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that 397 DEGs were significantly enriched in 13 pathways, including “cell cycle”, “cytokine–cytokine receptor interaction” and “steroid biosynthesis”, suggesting that the genes may be associated with cell cycle regulation, follicular development and hormone secretion to regulate the reproduction process. Additionally, quantitative real-time PCR was used to verify the reliability of the RNA-Seq data. CONCLUSIONS: The data obtained in this work enrich the genetic resources of goat and provide a further understanding of the complex molecular regulatory mechanisms occurring during the development of pregnancy and reproduction in goats. The DEGs screened in this study may play an important role in follicular development and hormone secretion and they would provide scientific basis for related research in the future. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40709-019-0095-9) contains supplementary material, which is available to authorized users.