Cargando…
A new semi-automated workflow for chemical data retrieval and quality checking for modeling applications
The quality of data used for QSAR model derivation is extremely important as it strongly affects the final robustness and predictive power of the model. Ambiguous or wrong structures need to be carefully checked, because they lead to errors in calculation of descriptors, hence leading to meaningless...
Autores principales: | Gadaleta, Domenico, Lombardo, Anna, Toma, Cosimo, Benfenati, Emilio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503381/ https://www.ncbi.nlm.nih.gov/pubmed/30536051 http://dx.doi.org/10.1186/s13321-018-0315-6 |
Ejemplares similares
-
Correction to: A new semi-automated workflow for chemical data retrieval and quality checking for modeling applications
por: Gadaleta, Domenico, et al.
Publicado: (2019) -
A semi-automated workflow for biodiversity data retrieval, cleaning, and quality control
por: Mathew, Cherian, et al.
Publicado: (2014) -
A KNIME Workflow to Assist the Analogue Identification for Read-Across, Applied to Aromatase Activity
por: Caballero Alfonso, Ana Yisel, et al.
Publicado: (2023) -
Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data
por: Pizzo, Fabiola, et al.
Publicado: (2015) -
QSAR Development for Plasma Protein Binding: Influence of the Ionization State
por: Toma, Cosimo, et al.
Publicado: (2018)