Cargando…
SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach
Electroencephalogram (EEG) is a common base signal used to monitor brain activities and diagnose sleep disorders. Manual sleep stage scoring is a time-consuming task for sleep experts and is limited by inter-rater reliability. In this paper, we propose an automatic sleep stage annotation method call...
Autores principales: | Mousavi, Sajad, Afghah, Fatemeh, Acharya, U. Rajendra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504038/ https://www.ncbi.nlm.nih.gov/pubmed/31063501 http://dx.doi.org/10.1371/journal.pone.0216456 |
Ejemplares similares
-
A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals
por: Yildirim, Ozal, et al.
Publicado: (2019) -
Confidence-Based Framework Using Deep Learning for Automated Sleep Stage Scoring
por: Hong, Jung Kyung, et al.
Publicado: (2021) -
Validation Study on Automated Sleep Stage Scoring Using a Deep Learning Algorithm †
por: Cho, Jae Hoon, et al.
Publicado: (2022) -
An End-to-End Depression Recognition Method Based on EEGNet
por: Liu, Bo, et al.
Publicado: (2022) -
Automated scoring of pre-REM sleep in mice with deep learning
por: Grieger, Niklas, et al.
Publicado: (2021)