Cargando…

Developmental increase in β-MHC enhances sarcomere length–dependent activation in the myocardium

Shifts in myosin heavy chain (MHC) isoforms in cardiac myocytes have been shown to alter cardiac muscle function not only in healthy developing hearts but also in diseased hearts. In guinea pig hearts, there is a large age-dependent shift in MHC isoforms from 80% α-MHC/20% β-MHC at 3 wk to 14% α-MHC...

Descripción completa

Detalles Bibliográficos
Autores principales: Reda, Sherif M., Gollapudi, Sampath K., Chandra, Murali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504293/
https://www.ncbi.nlm.nih.gov/pubmed/30602626
http://dx.doi.org/10.1085/jgp.201812183
_version_ 1783416545531133952
author Reda, Sherif M.
Gollapudi, Sampath K.
Chandra, Murali
author_facet Reda, Sherif M.
Gollapudi, Sampath K.
Chandra, Murali
author_sort Reda, Sherif M.
collection PubMed
description Shifts in myosin heavy chain (MHC) isoforms in cardiac myocytes have been shown to alter cardiac muscle function not only in healthy developing hearts but also in diseased hearts. In guinea pig hearts, there is a large age-dependent shift in MHC isoforms from 80% α-MHC/20% β-MHC at 3 wk to 14% α-MHC/86% β-MHC at 11 wk. Because kinetic differences in α- and β-MHC cross-bridges (XBs) are known to impart different cooperative effects on thin filaments, we hypothesize here that differences in α- and β-MHC expression in guinea pig cardiac muscle impact sarcomere length (SL)–dependent contractile function. We therefore measure steady state and dynamic contractile parameters in detergent-skinned cardiac muscle preparations isolated from the left ventricles of young (3 wk old) or adult (11 wk old) guinea pigs at two different SLs: short (1.9 µm) and long (2.3 µm). Our data show that SL-dependent effects on contractile parameters are augmented in adult guinea pig cardiac muscle preparations. Notably, the SL-mediated increase in myofilament Ca(2+) sensitivity (ΔpCa(50)) is twofold greater in adult guinea pig muscle preparations (ΔpCa(50) being 0.11 units in adult preparations but only 0.05 units in young preparations). Furthermore, adult guinea pig cardiac muscle preparations display greater SL-dependent changes than young muscle preparations in (1) the magnitude of length-mediated increase in the recruitment of new force-bearing XBs, (2) XB detachment rate, (3) XB strain-mediated effects on other force-bearing XBs, and (4) the rate constant of force redevelopment. Our findings suggest that increased β-MHC expression enhances length-dependent activation in the adult guinea pig cardiac myocardium.
format Online
Article
Text
id pubmed-6504293
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-65042932019-11-06 Developmental increase in β-MHC enhances sarcomere length–dependent activation in the myocardium Reda, Sherif M. Gollapudi, Sampath K. Chandra, Murali J Gen Physiol Research Articles Shifts in myosin heavy chain (MHC) isoforms in cardiac myocytes have been shown to alter cardiac muscle function not only in healthy developing hearts but also in diseased hearts. In guinea pig hearts, there is a large age-dependent shift in MHC isoforms from 80% α-MHC/20% β-MHC at 3 wk to 14% α-MHC/86% β-MHC at 11 wk. Because kinetic differences in α- and β-MHC cross-bridges (XBs) are known to impart different cooperative effects on thin filaments, we hypothesize here that differences in α- and β-MHC expression in guinea pig cardiac muscle impact sarcomere length (SL)–dependent contractile function. We therefore measure steady state and dynamic contractile parameters in detergent-skinned cardiac muscle preparations isolated from the left ventricles of young (3 wk old) or adult (11 wk old) guinea pigs at two different SLs: short (1.9 µm) and long (2.3 µm). Our data show that SL-dependent effects on contractile parameters are augmented in adult guinea pig cardiac muscle preparations. Notably, the SL-mediated increase in myofilament Ca(2+) sensitivity (ΔpCa(50)) is twofold greater in adult guinea pig muscle preparations (ΔpCa(50) being 0.11 units in adult preparations but only 0.05 units in young preparations). Furthermore, adult guinea pig cardiac muscle preparations display greater SL-dependent changes than young muscle preparations in (1) the magnitude of length-mediated increase in the recruitment of new force-bearing XBs, (2) XB detachment rate, (3) XB strain-mediated effects on other force-bearing XBs, and (4) the rate constant of force redevelopment. Our findings suggest that increased β-MHC expression enhances length-dependent activation in the adult guinea pig cardiac myocardium. Rockefeller University Press 2019-05-06 2019-01-02 /pmc/articles/PMC6504293/ /pubmed/30602626 http://dx.doi.org/10.1085/jgp.201812183 Text en © 2019 Reda et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Research Articles
Reda, Sherif M.
Gollapudi, Sampath K.
Chandra, Murali
Developmental increase in β-MHC enhances sarcomere length–dependent activation in the myocardium
title Developmental increase in β-MHC enhances sarcomere length–dependent activation in the myocardium
title_full Developmental increase in β-MHC enhances sarcomere length–dependent activation in the myocardium
title_fullStr Developmental increase in β-MHC enhances sarcomere length–dependent activation in the myocardium
title_full_unstemmed Developmental increase in β-MHC enhances sarcomere length–dependent activation in the myocardium
title_short Developmental increase in β-MHC enhances sarcomere length–dependent activation in the myocardium
title_sort developmental increase in β-mhc enhances sarcomere length–dependent activation in the myocardium
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504293/
https://www.ncbi.nlm.nih.gov/pubmed/30602626
http://dx.doi.org/10.1085/jgp.201812183
work_keys_str_mv AT redasherifm developmentalincreaseinbmhcenhancessarcomerelengthdependentactivationinthemyocardium
AT gollapudisampathk developmentalincreaseinbmhcenhancessarcomerelengthdependentactivationinthemyocardium
AT chandramurali developmentalincreaseinbmhcenhancessarcomerelengthdependentactivationinthemyocardium