Cargando…
Abstract 37: Machine Learning Analysis Of Connective Tissue Networks Enables Objective Characterization Of Skin Fibroses
Autores principales: | Chinta, Malini, Mascharak, Shamik, Borrelli, Mimi R., Moore, Alessandra L., Brewer, Rachel E., Sokol, Jan, Kania, Gabriela, Garibay, Evelyn, Foster, Deshka, desJardins-Park, Heather, Duoto, Bryan, Distler, Oliver, Gurtner, Geoffrey C., Lorenz, H. Peter, Wan, Derrick C., Chang, Howard Y., Longaker, Michael T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504506/ http://dx.doi.org/10.1097/01.GOX.0000558311.64337.ba |
Ejemplares similares
-
Abstract 5: Inhibition of Mechanotransduction Yields Regenerative Wound Healing by Engrailed1-negative Fibroblasts
por: Mascharak, Shamik, et al.
Publicado: (2019) -
Abstract 189: Postnatal Engrailed-1 Expression Activates A Pro-Fibrotic Transcriptional Program In Wound Fibroblasts
por: Mascharak, Shamik, et al.
Publicado: (2020) -
Abstract 2: Epigenetic Modulation of TGF-beta Signaling Underlies the Scarring Fibroblast Phenotype
por: desJardins-Park, Heather E., et al.
Publicado: (2019) -
Abstract 85: Jun Drives A Fibrogenic Cutaneous Wound Healing Response Through Differential Action On Distinct Fibroblast Subpopulations
por: Borrelli, Mimi R., et al.
Publicado: (2019) -
The Spectrum of Scarring in Craniofacial Wound Repair
por: desJardins-Park, Heather E., et al.
Publicado: (2019)