Cargando…

Modeling the pasture-associated severe equine asthma bronchoalveolar lavage fluid proteome identifies molecular events mediating neutrophilic airway inflammation

Background: Pasture-associated severe equine asthma is a warm season, environmentally-induced respiratory disease characterized by reversible airway obstruction, persistent and non-specific airway hyper-responsiveness, and chronic neutrophilic airway inflammation. During seasonal exacerbation, signs...

Descripción completa

Detalles Bibliográficos
Autores principales: Bright, Lauren A, Dittmar, Wellesley, Nanduri, Bindu, McCarthy, Fiona M, Mujahid, Nisma, Costa, Lais RR, Burgess, Shane C, Swiderski, Cyprianna E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504673/
https://www.ncbi.nlm.nih.gov/pubmed/31119093
http://dx.doi.org/10.2147/VMRR.S194427
Descripción
Sumario:Background: Pasture-associated severe equine asthma is a warm season, environmentally-induced respiratory disease characterized by reversible airway obstruction, persistent and non-specific airway hyper-responsiveness, and chronic neutrophilic airway inflammation. During seasonal exacerbation, signs vary from mild to life-threatening episodes of wheezing, coughing, and chronic debilitating labored breathing. Purpose: In human asthma, neutrophilic airway inflammation is associated with more severe and steroid-refractory asthma phenotypes, highlighting a need to decipher the mechanistic basis of this disease characteristic. We hypothesize that the collective biological activities of proteins in bronchoalveolar lavage fluid (BALF) of horses with pasture-associated severe asthma predict changes in neutrophil functions that contribute to airway neutrophilic inflammation. Methods: Using shotgun proteomics, we identified 1,003 unique proteins in cell-free BALF from six horses experiencing asthma exacerbation and six control herdmates. Contributions of each protein to ten neutrophil functions were modeled using manual biocuration to determine each protein’s net effect on the respective neutrophil functions. Results: A total of 417 proteins were unique to asthmatic horses, 472 proteins were unique to control horses (p<0.05), and 114 proteins were common in both groups. Proteins whose biological activities are responsible for increasing neutrophil migration, chemotaxis, cell spreading, transmigration, and infiltration, which would collectively bring neutrophils to airways, were over-represented in the BALF of asthmatic relative to control horses. By contrast, proteins whose biological activities support neutrophil activation, adhesion, phagocytosis, respiratory burst, and apoptosis, which would collectively shorten neutrophil lifespan, were under-represented in BALF of asthmatic relative to control horses. Interaction networks generated using Ingenuity(®) Pathways Analysis further support the results of our biocuration. Conclusion: Congruent with our hypothesis, the collective biological functions represented in differentially expressed proteins of BALF from horses with pasture-associated severe asthma support neutrophilic airway inflammation. This illustrates the utility of systems modeling to organize functional genomics data in a manner that characterizes complex molecular events associated with clinically relevant disease.