Cargando…
To Embed or Not: Network Embedding as a Paradigm in Computational Biology
Current technology is producing high throughput biomedical data at an ever-growing rate. A common approach to interpreting such data is through network-based analyses. Since biological networks are notoriously complex and hard to decipher, a growing body of work applies graph embedding techniques to...
Autores principales: | Nelson, Walter, Zitnik, Marinka, Wang, Bo, Leskovec, Jure, Goldenberg, Anna, Sharan, Roded |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504708/ https://www.ncbi.nlm.nih.gov/pubmed/31118945 http://dx.doi.org/10.3389/fgene.2019.00381 |
Ejemplares similares
-
Predicting multicellular function through multi-layer tissue networks
por: Zitnik, Marinka, et al.
Publicado: (2017) -
Prioritizing network communities
por: Zitnik, Marinka, et al.
Publicado: (2018) -
Modeling polypharmacy side effects with graph convolutional networks
por: Zitnik, Marinka, et al.
Publicado: (2018) -
Network enhancement as a general method to denoise weighted biological networks
por: Wang, Bo, et al.
Publicado: (2018) -
Identification of disease treatment mechanisms through the multiscale interactome
por: Ruiz, Camilo, et al.
Publicado: (2021)