Cargando…
Employing machine learning for theory validation and identification of experimental conditions in laser-plasma physics
The validation of a theory is commonly based on appealing to clearly distinguishable and describable features in properly reduced experimental data, while the use of ab-initio simulation for interpreting experimental data typically requires complete knowledge about initial conditions and parameters....
Autores principales: | Gonoskov, A., Wallin, E., Polovinkin, A., Meyerov, I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504880/ https://www.ncbi.nlm.nih.gov/pubmed/31065006 http://dx.doi.org/10.1038/s41598-019-43465-3 |
Ejemplares similares
-
Towards ML-Based Diagnostics of Laser–Plasma Interactions
por: Rodimkov, Yury, et al.
Publicado: (2021) -
ML-Based Analysis of Particle Distributions in High-Intensity Laser Experiments: Role of Binning Strategy
por: Rodimkov, Yury, et al.
Publicado: (2020) -
Extreme plasma states in laser-governed vacuum breakdown
por: Efimenko, Evgeny S., et al.
Publicado: (2018) -
Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation
por: Gonoskov, I. A., et al.
Publicado: (2016) -
Laser plasma theory and simulation
por: Mima, Kunioki, et al.
Publicado: (1994)