Cargando…
Designing a rigorous microscopy experiment: Validating methods and avoiding bias
Images generated by a microscope are never a perfect representation of the biological specimen. Microscopes and specimen preparation methods are prone to error and can impart images with unintended attributes that might be misconstrued as belonging to the biological specimen. In addition, our brains...
Autores principales: | Jost, Anna Payne-Tobin, Waters, Jennifer C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504886/ https://www.ncbi.nlm.nih.gov/pubmed/30894402 http://dx.doi.org/10.1083/jcb.201812109 |
Ejemplares similares
-
Validation of digital microscopy: Review of validation methods and sources of bias
por: Bertram, Christof A., et al.
Publicado: (2021) -
Rigorous Statistical Methods for Rigorous Microbiome Science
por: Willis, Amy D.
Publicado: (2019) -
Avoiding experimental bias by systematic antibody validation
por: Jager, Sara B., et al.
Publicado: (2016) -
Rigorous idiography: Exploring subjective and idiographic data with rigorous methods—The method of derangements
por: Evans, Chris, et al.
Publicado: (2023) -
RiGoR: reporting guidelines to address common sources of bias in risk model development
por: Kerr, Kathleen F, et al.
Publicado: (2015)