Cargando…
Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region
In contrast to the well-studied condensation and folding of chromosomes during mitosis, their dynamics during interphase are less understood. We deployed a CRISPR-based DNA imaging system to track the dynamics of genomic loci situated kilobases to megabases apart on a single chromosome. Two distinct...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504907/ https://www.ncbi.nlm.nih.gov/pubmed/30846483 http://dx.doi.org/10.1083/jcb.201807162 |
_version_ | 1783416659930775552 |
---|---|
author | Ma, Hanhui Tu, Li-Chun Chung, Yu-Chieh Naseri, Ardalan Grunwald, David Zhang, Shaojie Pederson, Thoru |
author_facet | Ma, Hanhui Tu, Li-Chun Chung, Yu-Chieh Naseri, Ardalan Grunwald, David Zhang, Shaojie Pederson, Thoru |
author_sort | Ma, Hanhui |
collection | PubMed |
description | In contrast to the well-studied condensation and folding of chromosomes during mitosis, their dynamics during interphase are less understood. We deployed a CRISPR-based DNA imaging system to track the dynamics of genomic loci situated kilobases to megabases apart on a single chromosome. Two distinct modes of dynamics were resolved: local movements as well as ones that might reflect translational movements of the entire domain within the nucleoplasmic space. The magnitude of both of these modes of movements increased from early to late G1, whereas the translational movements were reduced in early S phase. The local fluctuations decreased slightly in early S and more markedly in mid-late S. These newly observed movements and their cell cycle dependence suggest the existence of a hitherto unrecognized compaction–relaxation dynamic of the interphase chromosome fiber, operating concurrently with changes in the extent of overall movements of loci in the 4D genome. |
format | Online Article Text |
id | pubmed-6504907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-65049072019-11-06 Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region Ma, Hanhui Tu, Li-Chun Chung, Yu-Chieh Naseri, Ardalan Grunwald, David Zhang, Shaojie Pederson, Thoru J Cell Biol Research Articles In contrast to the well-studied condensation and folding of chromosomes during mitosis, their dynamics during interphase are less understood. We deployed a CRISPR-based DNA imaging system to track the dynamics of genomic loci situated kilobases to megabases apart on a single chromosome. Two distinct modes of dynamics were resolved: local movements as well as ones that might reflect translational movements of the entire domain within the nucleoplasmic space. The magnitude of both of these modes of movements increased from early to late G1, whereas the translational movements were reduced in early S phase. The local fluctuations decreased slightly in early S and more markedly in mid-late S. These newly observed movements and their cell cycle dependence suggest the existence of a hitherto unrecognized compaction–relaxation dynamic of the interphase chromosome fiber, operating concurrently with changes in the extent of overall movements of loci in the 4D genome. Rockefeller University Press 2019-05-06 2019-03-07 /pmc/articles/PMC6504907/ /pubmed/30846483 http://dx.doi.org/10.1083/jcb.201807162 Text en © 2019 Ma et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Ma, Hanhui Tu, Li-Chun Chung, Yu-Chieh Naseri, Ardalan Grunwald, David Zhang, Shaojie Pederson, Thoru Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region |
title | Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region |
title_full | Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region |
title_fullStr | Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region |
title_full_unstemmed | Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region |
title_short | Cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region |
title_sort | cell cycle– and genomic distance–dependent dynamics of a discrete chromosomal region |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504907/ https://www.ncbi.nlm.nih.gov/pubmed/30846483 http://dx.doi.org/10.1083/jcb.201807162 |
work_keys_str_mv | AT mahanhui cellcycleandgenomicdistancedependentdynamicsofadiscretechromosomalregion AT tulichun cellcycleandgenomicdistancedependentdynamicsofadiscretechromosomalregion AT chungyuchieh cellcycleandgenomicdistancedependentdynamicsofadiscretechromosomalregion AT naseriardalan cellcycleandgenomicdistancedependentdynamicsofadiscretechromosomalregion AT grunwalddavid cellcycleandgenomicdistancedependentdynamicsofadiscretechromosomalregion AT zhangshaojie cellcycleandgenomicdistancedependentdynamicsofadiscretechromosomalregion AT pedersonthoru cellcycleandgenomicdistancedependentdynamicsofadiscretechromosomalregion |