Cargando…

Capturing single-cell heterogeneity via data fusion improves image-based profiling

Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features’ dispersion and covariances to population averages, in the context of image-based profiling. W...

Descripción completa

Detalles Bibliográficos
Autores principales: Rohban, Mohammad H., Abbasi, Hamdah S., Singh, Shantanu, Carpenter, Anne E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504923/
https://www.ncbi.nlm.nih.gov/pubmed/31064985
http://dx.doi.org/10.1038/s41467-019-10154-8
Descripción
Sumario:Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features’ dispersion and covariances to population averages, in the context of image-based profiling. We find that data fusion is critical for these metrics to improve results over the prior alternatives, providing at least ~20% better performance in predicting a compound’s mechanism of action (MoA) and a gene’s pathway.