Cargando…

Capturing single-cell heterogeneity via data fusion improves image-based profiling

Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features’ dispersion and covariances to population averages, in the context of image-based profiling. W...

Descripción completa

Detalles Bibliográficos
Autores principales: Rohban, Mohammad H., Abbasi, Hamdah S., Singh, Shantanu, Carpenter, Anne E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504923/
https://www.ncbi.nlm.nih.gov/pubmed/31064985
http://dx.doi.org/10.1038/s41467-019-10154-8
_version_ 1783416662519709696
author Rohban, Mohammad H.
Abbasi, Hamdah S.
Singh, Shantanu
Carpenter, Anne E.
author_facet Rohban, Mohammad H.
Abbasi, Hamdah S.
Singh, Shantanu
Carpenter, Anne E.
author_sort Rohban, Mohammad H.
collection PubMed
description Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features’ dispersion and covariances to population averages, in the context of image-based profiling. We find that data fusion is critical for these metrics to improve results over the prior alternatives, providing at least ~20% better performance in predicting a compound’s mechanism of action (MoA) and a gene’s pathway.
format Online
Article
Text
id pubmed-6504923
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65049232019-05-09 Capturing single-cell heterogeneity via data fusion improves image-based profiling Rohban, Mohammad H. Abbasi, Hamdah S. Singh, Shantanu Carpenter, Anne E. Nat Commun Article Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features’ dispersion and covariances to population averages, in the context of image-based profiling. We find that data fusion is critical for these metrics to improve results over the prior alternatives, providing at least ~20% better performance in predicting a compound’s mechanism of action (MoA) and a gene’s pathway. Nature Publishing Group UK 2019-05-07 /pmc/articles/PMC6504923/ /pubmed/31064985 http://dx.doi.org/10.1038/s41467-019-10154-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Rohban, Mohammad H.
Abbasi, Hamdah S.
Singh, Shantanu
Carpenter, Anne E.
Capturing single-cell heterogeneity via data fusion improves image-based profiling
title Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_full Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_fullStr Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_full_unstemmed Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_short Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_sort capturing single-cell heterogeneity via data fusion improves image-based profiling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504923/
https://www.ncbi.nlm.nih.gov/pubmed/31064985
http://dx.doi.org/10.1038/s41467-019-10154-8
work_keys_str_mv AT rohbanmohammadh capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling
AT abbasihamdahs capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling
AT singhshantanu capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling
AT carpenterannee capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling