Cargando…
Automatic Localization and Count of Agricultural Crop Pests Based on an Improved Deep Learning Pipeline
Insect pests are known to be a major cause of damage to agricultural crops. This paper proposed a deep learning-based pipeline for localization and counting of agricultural pests in images by self-learning saliency feature maps. Our method integrates a convolutional neural network (CNN) of ZF (Zeile...
Autores principales: | Li, Weilu, Chen, Peng, Wang, Bing, Xie, Chengjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504937/ https://www.ncbi.nlm.nih.gov/pubmed/31065055 http://dx.doi.org/10.1038/s41598-019-43171-0 |
Ejemplares similares
-
Editorial: Deep learning in crop diseases and insect pests
por: Chen, Peng, et al.
Publicado: (2023) -
An Integrated Goat Head Detection and Automatic Counting Method Based on Deep Learning
por: Zhang, Yu, et al.
Publicado: (2022) -
Automatic Annotation of Subsea Pipelines Using Deep Learning
por: Stamoulakatos, Anastasios, et al.
Publicado: (2020) -
Automatic Pest Counting from Pheromone Trap Images Using Deep Learning Object Detectors for Matsucoccus thunbergianae Monitoring
por: Hong, Suk-Ju, et al.
Publicado: (2021) -
Genome evolution in an agricultural pest following adoption of transgenic crops
por: Taylor, Katherine L., et al.
Publicado: (2021)