Cargando…
Metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome
BACKGROUND: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which is commonly treated with antidiarrhoeal, antispasmodics, serotonergic agents or laxative agents. These treatments provide relief for IBS symptoms but may also lead to undesired side effects. Previously...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505125/ https://www.ncbi.nlm.nih.gov/pubmed/31080495 http://dx.doi.org/10.1186/s13020-019-0240-2 |
_version_ | 1783416695119937536 |
---|---|
author | Lin, Xianwei Liu, Xia Xu, Jingjing Cheng, Kian-Kai Cao, Jianan Liu, Tao Liu, Qiong Zhong, Huan Shen, Guiping Dong, Jiyang Chang, Xiaorong |
author_facet | Lin, Xianwei Liu, Xia Xu, Jingjing Cheng, Kian-Kai Cao, Jianan Liu, Tao Liu, Qiong Zhong, Huan Shen, Guiping Dong, Jiyang Chang, Xiaorong |
author_sort | Lin, Xianwei |
collection | PubMed |
description | BACKGROUND: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which is commonly treated with antidiarrhoeal, antispasmodics, serotonergic agents or laxative agents. These treatments provide relief for IBS symptoms but may also lead to undesired side effects. Previously, herb-partitioned moxibustion (HPM) treatment has been demonstrated to be effective in ameliorating symptoms of IBS. However, the underlying mechanism of this beneficial treatment is yet to be established. The aim of the current study was to systematically assess the metabolic alterations in response to diarrhea-predominant IBS (IBS-D) and therapeutic effect of HPM. METHODS: Proton nuclear magnetic resonance spectroscopy ((1)H NMR)-based metabolomics approach was used to investigate fecal and serum metabolome of rat model of IBS-D with and without HPM treatment. RESULTS: The current results showed that IBS-induced metabolic alterations in fecal and serum sample include higher level of threonine and UDP-glucose together with lower levels of aspartate, ornithine, leucine, isoleucine, proline, 2-hydroxy butyrate, valine, lactate, ethanol, arginine, 2-oxoisovalerate and bile acids. These altered metabolites potentially involve in impaired gut secretory immune system and intestinal inflammation, malabsorption of nutrients, and disordered metabolism of bile acids. Notably, the HPM treatment was found able to normalize the Bristol stool forms scale scores, fecal water content, plasma endotoxin level, and a number of IBS-induced metabolic changes. CONCLUSIONS: These findings may provide useful insight into the molecular basis of IBS and mechanism of the HPM intervention. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13020-019-0240-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6505125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65051252019-05-10 Metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome Lin, Xianwei Liu, Xia Xu, Jingjing Cheng, Kian-Kai Cao, Jianan Liu, Tao Liu, Qiong Zhong, Huan Shen, Guiping Dong, Jiyang Chang, Xiaorong Chin Med Research BACKGROUND: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which is commonly treated with antidiarrhoeal, antispasmodics, serotonergic agents or laxative agents. These treatments provide relief for IBS symptoms but may also lead to undesired side effects. Previously, herb-partitioned moxibustion (HPM) treatment has been demonstrated to be effective in ameliorating symptoms of IBS. However, the underlying mechanism of this beneficial treatment is yet to be established. The aim of the current study was to systematically assess the metabolic alterations in response to diarrhea-predominant IBS (IBS-D) and therapeutic effect of HPM. METHODS: Proton nuclear magnetic resonance spectroscopy ((1)H NMR)-based metabolomics approach was used to investigate fecal and serum metabolome of rat model of IBS-D with and without HPM treatment. RESULTS: The current results showed that IBS-induced metabolic alterations in fecal and serum sample include higher level of threonine and UDP-glucose together with lower levels of aspartate, ornithine, leucine, isoleucine, proline, 2-hydroxy butyrate, valine, lactate, ethanol, arginine, 2-oxoisovalerate and bile acids. These altered metabolites potentially involve in impaired gut secretory immune system and intestinal inflammation, malabsorption of nutrients, and disordered metabolism of bile acids. Notably, the HPM treatment was found able to normalize the Bristol stool forms scale scores, fecal water content, plasma endotoxin level, and a number of IBS-induced metabolic changes. CONCLUSIONS: These findings may provide useful insight into the molecular basis of IBS and mechanism of the HPM intervention. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13020-019-0240-2) contains supplementary material, which is available to authorized users. BioMed Central 2019-05-08 /pmc/articles/PMC6505125/ /pubmed/31080495 http://dx.doi.org/10.1186/s13020-019-0240-2 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Lin, Xianwei Liu, Xia Xu, Jingjing Cheng, Kian-Kai Cao, Jianan Liu, Tao Liu, Qiong Zhong, Huan Shen, Guiping Dong, Jiyang Chang, Xiaorong Metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome |
title | Metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome |
title_full | Metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome |
title_fullStr | Metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome |
title_full_unstemmed | Metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome |
title_short | Metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome |
title_sort | metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505125/ https://www.ncbi.nlm.nih.gov/pubmed/31080495 http://dx.doi.org/10.1186/s13020-019-0240-2 |
work_keys_str_mv | AT linxianwei metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT liuxia metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT xujingjing metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT chengkiankai metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT caojianan metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT liutao metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT liuqiong metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT zhonghuan metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT shenguiping metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT dongjiyang metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome AT changxiaorong metabolomicsanalysisofherbpartitionedmoxibustiontreatmentonratswithdiarrheapredominantirritablebowelsyndrome |