Cargando…
An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction
Evidence that genomic selection (GS) is a technology that is revolutionizing plant breeding continues to grow. However, it is very well documented that its success strongly depends on statistical models, which are used by GS to perform predictions of candidate genotypes that were not phenotyped. Bec...
Autores principales: | Montesinos-López, Osval A., Montesinos-López, Abelardo, Luna-Vázquez, Francisco Javier, Toledo, Fernando H., Pérez-Rodríguez, Paulino, Lillemo, Morten, Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505148/ https://www.ncbi.nlm.nih.gov/pubmed/30819822 http://dx.doi.org/10.1534/g3.119.400126 |
Ejemplares similares
-
A Bayesian Genomic Multi-output Regressor Stacking Model for Predicting Multi-trait Multi-environment Plant Breeding Data
por: Montesinos-López, Osval A., et al.
Publicado: (2019) -
A Genomic Bayesian Multi-trait and Multi-environment Model
por: Montesinos-López, Osval A., et al.
Publicado: (2016) -
Multi-trait, Multi-environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits
por: Montesinos-López, Osval A., et al.
Publicado: (2018) -
Partial least squares enhance multi-trait genomic prediction of potato cultivars in new environments
por: Ortiz, Rodomiro, et al.
Publicado: (2023) -
Multi-environment Genomic Prediction of Plant Traits Using Deep Learners With Dense Architecture
por: Montesinos-López, Abelardo, et al.
Publicado: (2018)