Cargando…
Machine learning to help researchers evaluate biases in clinical trials: a prospective, randomized user study
OBJECTIVE: Assessing risks of bias in randomized controlled trials (RCTs) is an important but laborious task when conducting systematic reviews. RobotReviewer (RR), an open-source machine learning (ML) system, semi-automates bias assessments. We conducted a user study of RobotReviewer, evaluating ti...
Autores principales: | Soboczenski, Frank, Trikalinos, Thomas A., Kuiper, Joël, Bias, Randolph G., Wallace, Byron C., Marshall, Iain J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505190/ https://www.ncbi.nlm.nih.gov/pubmed/31068178 http://dx.doi.org/10.1186/s12911-019-0814-z |
Ejemplares similares
-
RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials
por: Marshall, Iain J, et al.
Publicado: (2016) -
Trialstreamer: A living, automatically updated database of clinical trial reports
por: Marshall, Iain J, et al.
Publicado: (2020) -
Machine learning for identifying Randomized Controlled Trials: An evaluation and practitioner's guide
por: Marshall, Iain J., et al.
Publicado: (2018) -
Toward systematic review automation: a practical guide to using machine learning tools in research synthesis
por: Marshall, Iain J., et al.
Publicado: (2019) -
State of the evidence: a survey of global disparities in clinical trials
por: Marshall, Iain James, et al.
Publicado: (2021)