Cargando…

Acoustic Neurofeedback Increases Beta ERD During Mental Rotation Task

The purpose of the present study was to identify the effect of acoustic neurofeedback on brain activity during consecutive stages of mental rotation of 3D objects. Given the fact that the process of mental rotation of objects is associated with desynchronisation of beta rhythm (beta ERD), it was exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozga, Wioletta Karina, Zapała, Dariusz, Wierzgała, Piotr, Augustynowicz, Paweł, Porzak, Robert, Wójcik, Grzegorz Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505495/
https://www.ncbi.nlm.nih.gov/pubmed/30565198
http://dx.doi.org/10.1007/s10484-018-9426-0
Descripción
Sumario:The purpose of the present study was to identify the effect of acoustic neurofeedback on brain activity during consecutive stages of mental rotation of 3D objects. Given the fact that the process of mental rotation of objects is associated with desynchronisation of beta rhythm (beta ERD), it was expected that suppression in this band would be greater in the experimental group than in the controls. Thirty-three participants were randomly allocated to two groups performing the classic Shepard–Metzler mental rotation task (1971). The experimental group received auditory stimuli when the level of concentration fell below the threshold value determined separately for each participant based on the engagement index [β/(α + Θ)]. The level of concentration in the control group was not stimulated. Compared to the controls, the experimental group was found with greater beta-band suppression recorded above the left parietal cortex during the early stage and above the right parietal cortex during the late stage of mental rotation task. At the late stage of mental rotation, only the experimental group was found with differences in beta ERD related to varied degrees of the rotation angle and the control condition (zero angles, no rotation) recorded above the right parietal cortex and the central area of cerebral cortex. The present findings suggest that acoustic feedback might improve the process of mental rotation.