Cargando…
Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data
Bayesian and non-Bayesian moment-based inference methods are commonly used to estimate the parameters defining stochastic models of gene regulatory networks from noisy single cell or population snapshot data. However, a systematic investigation of the accuracy of the predictions of these methods rem...
Autores principales: | Cao, Zhixing, Grima, Ramon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505555/ https://www.ncbi.nlm.nih.gov/pubmed/30940028 http://dx.doi.org/10.1098/rsif.2018.0967 |
Ejemplares similares
-
Stochastic switching of delayed feedback suppresses oscillations in genetic regulatory systems
por: Karamched, Bhargav R., et al.
Publicado: (2023) -
Degradation rate uniformity determines success of oscillations in repressive feedback regulatory networks
por: Page, Karen M., et al.
Publicado: (2018) -
Analytical approximations for spatial stochastic gene expression in single cells and tissues
por: Smith, Stephen, et al.
Publicado: (2016) -
Macromolecular crowding directs the motion of small molecules inside cells
por: Smith, Stephen, et al.
Publicado: (2017) -
Distinguishing between models of mammalian gene expression: telegraph-like models versus mechanistic models
por: Braichenko, Svitlana, et al.
Publicado: (2021)