Cargando…

In Silico Models for Designing and Discovering Novel Anticancer Peptides

Use of therapeutic peptides in cancer therapy has been receiving considerable attention in the recent years. Present study describes the development of computational models for predicting and discovering novel anticancer peptides. Preliminary analysis revealed that Cys, Gly, Ile, Lys, and Trp are do...

Descripción completa

Detalles Bibliográficos
Autores principales: Tyagi, Atul, Kapoor, Pallavi, Kumar, Rahul, Chaudhary, Kumardeep, Gautam, Ankur, Raghava, G. P. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505669/
https://www.ncbi.nlm.nih.gov/pubmed/24136089
http://dx.doi.org/10.1038/srep02984
Descripción
Sumario:Use of therapeutic peptides in cancer therapy has been receiving considerable attention in the recent years. Present study describes the development of computational models for predicting and discovering novel anticancer peptides. Preliminary analysis revealed that Cys, Gly, Ile, Lys, and Trp are dominated at various positions in anticancer peptides. Support vector machine models were developed using amino acid composition and binary profiles as input features on main dataset that contains experimentally validated anticancer peptides and random peptides derived from SwissProt database. In addition, models were developed on alternate dataset that contains antimicrobial peptides instead of random peptides. Binary profiles-based model achieved maximum accuracy 91.44% with MCC 0.83. We have developed a webserver, which would be helpful in: (i) predicting minimum mutations required for improving anticancer potency; (ii) virtual screening of peptides for discovering novel anticancer peptides, and (iii) scanning natural proteins for identification of anticancer peptides (http://crdd.osdd.net/raghava/anticp/).