Cargando…

The use of bivariate copulas for bias correction of reanalysis air temperature data

Air temperature data retrieved from global atmospheric models may show a systematic bias with respect to measurements from weather stations. This is a common concern in local climate studies. The current study presents two methods based upon copulas and Conditional Probability (CP) to predict bias-c...

Descripción completa

Detalles Bibliográficos
Autores principales: Alidoost, Fakhereh, Stein, Alfred, Su, Zhongbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505955/
https://www.ncbi.nlm.nih.gov/pubmed/31067243
http://dx.doi.org/10.1371/journal.pone.0216059
Descripción
Sumario:Air temperature data retrieved from global atmospheric models may show a systematic bias with respect to measurements from weather stations. This is a common concern in local climate studies. The current study presents two methods based upon copulas and Conditional Probability (CP) to predict bias-corrected mean air temperature in a data-scarce environment: CP-I offers a single conditional probability as a predictor, CP-II is a pixel-wise version of CP-I and offers spatially varying predictors. The methods were applied on daily air temperature in the Qazvin Plain, Iran that were collected at 24 weather stations and 150 ECMWF ERA-interim grid cells from a single month (June) over 11 years. We compared the methods with the commonly applied conditional expectation and conditional median methods. Leave-k-out cross-validation and correlation scores show that the new methods reduced the bias with 44–68% for the full data set and with 34–74% on a homogeneous subarea. We conclude that the two methods are able to locally improve ECMWF air temperatures in a data-scarce area.