Cargando…

Herbs-partitioned moxibustion alleviates aberrant intestinal epithelial cell apoptosis by upregulating A20 expression in a mouse model of Crohn’s disease

BACKGROUND: A20 inhibits intestinal epithelial cell apoptosis in Crohn’s disease, and herbs-partitioned moxibustion (HPM) has been demonstrated to be an effective treatment for Crohn’s disease. However, the mechanism by which HPM reduces intestinal epithelial cell apoptosis in Crohn’s disease has no...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jing, Wu, Lu-Yi, Chen, Liu, Guo, Ya-Jing, Sun, Yi, Li, Tao, Zhao, Ji-Meng, Bao, Chun-Hui, Wu, Huan-Gan, Shi, Yin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506586/
https://www.ncbi.nlm.nih.gov/pubmed/31114134
http://dx.doi.org/10.3748/wjg.v25.i17.2071
_version_ 1783416882925142016
author Zhou, Jing
Wu, Lu-Yi
Chen, Liu
Guo, Ya-Jing
Sun, Yi
Li, Tao
Zhao, Ji-Meng
Bao, Chun-Hui
Wu, Huan-Gan
Shi, Yin
author_facet Zhou, Jing
Wu, Lu-Yi
Chen, Liu
Guo, Ya-Jing
Sun, Yi
Li, Tao
Zhao, Ji-Meng
Bao, Chun-Hui
Wu, Huan-Gan
Shi, Yin
author_sort Zhou, Jing
collection PubMed
description BACKGROUND: A20 inhibits intestinal epithelial cell apoptosis in Crohn’s disease, and herbs-partitioned moxibustion (HPM) has been demonstrated to be an effective treatment for Crohn’s disease. However, the mechanism by which HPM reduces intestinal epithelial cell apoptosis in Crohn’s disease has not been thoroughly elucidated to date. AIM: To elucidate whether HPM exerts its effects by upregulating A20 to affect intestinal epithelial cell apoptosis in a Crohn’s disease mouse model. METHODS: In this study, mice with A20 deletion in intestinal epithelial cells (A20(IEC-KO)) were utilized to establish a Crohn’s disease mouse model with 2,4,6-trinitrobenzene sulfonic acid (TNBS) administration, as well as wild-type mice. Mice were randomly divided into normal control (NC), model control (MC), mesalazine (MESA), and HPM groups. The morphology of the colonic mucosa was observed by hematoxylin-eosin staining, and serum endotoxin and apoptosis of epithelial cells were evaluated by enzyme-linked immunosorbent assay and terminal dUTP nick-end labeling assay accordingly. The protein expression levels of A20 and tumor necrosis factor receptor 1 (TNFR1)-related signaling molecules were evaluated by Western blot, and co-expression of A20 and TNFR1-associated death domain (TRADD) and co-expression of A20 and receptor-interacting protein 1 (RIP1) were observed by double immunofluorescence staining. RESULTS: The intestinal epithelial barrier was noted to have an improvement in the HPM group of wild-type (WT) mice compared with that in A20(IEC-KO) mice. Compared with A20 (IEC-KO) HPM mice, serum endotoxin levels and apoptosis percentages were decreased (P < 0.01), A20 expression levels were increased (P < 0.01), and expression of TNFR1, TRADDD, and RIP1 was decreased in the HPM group of WT mice (P(TNFR1) < 0.05, P(TRADD) < 0.01, P(RIP1) < 0.01). Both of the co-expression of A20/TRADD and A20/RIP1 showed a predominantly yellow fluorescence in the HPM group of WT mice, while a predominantly red fluorescence was noted in the HPM group of A20(IEC-KO) mice. CONCLUSION: Our findings suggest that HPM in treating Crohn’s disease functions possibly via upregulation of the A20 expression level, resulting in downregulation of TNFR1, TRADD, and RIP1 to alleviate increased cell apoptosis in the intestinal epithelial barrier in Crohn's disease.
format Online
Article
Text
id pubmed-6506586
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Baishideng Publishing Group Inc
record_format MEDLINE/PubMed
spelling pubmed-65065862019-05-21 Herbs-partitioned moxibustion alleviates aberrant intestinal epithelial cell apoptosis by upregulating A20 expression in a mouse model of Crohn’s disease Zhou, Jing Wu, Lu-Yi Chen, Liu Guo, Ya-Jing Sun, Yi Li, Tao Zhao, Ji-Meng Bao, Chun-Hui Wu, Huan-Gan Shi, Yin World J Gastroenterol Basic Study BACKGROUND: A20 inhibits intestinal epithelial cell apoptosis in Crohn’s disease, and herbs-partitioned moxibustion (HPM) has been demonstrated to be an effective treatment for Crohn’s disease. However, the mechanism by which HPM reduces intestinal epithelial cell apoptosis in Crohn’s disease has not been thoroughly elucidated to date. AIM: To elucidate whether HPM exerts its effects by upregulating A20 to affect intestinal epithelial cell apoptosis in a Crohn’s disease mouse model. METHODS: In this study, mice with A20 deletion in intestinal epithelial cells (A20(IEC-KO)) were utilized to establish a Crohn’s disease mouse model with 2,4,6-trinitrobenzene sulfonic acid (TNBS) administration, as well as wild-type mice. Mice were randomly divided into normal control (NC), model control (MC), mesalazine (MESA), and HPM groups. The morphology of the colonic mucosa was observed by hematoxylin-eosin staining, and serum endotoxin and apoptosis of epithelial cells were evaluated by enzyme-linked immunosorbent assay and terminal dUTP nick-end labeling assay accordingly. The protein expression levels of A20 and tumor necrosis factor receptor 1 (TNFR1)-related signaling molecules were evaluated by Western blot, and co-expression of A20 and TNFR1-associated death domain (TRADD) and co-expression of A20 and receptor-interacting protein 1 (RIP1) were observed by double immunofluorescence staining. RESULTS: The intestinal epithelial barrier was noted to have an improvement in the HPM group of wild-type (WT) mice compared with that in A20(IEC-KO) mice. Compared with A20 (IEC-KO) HPM mice, serum endotoxin levels and apoptosis percentages were decreased (P < 0.01), A20 expression levels were increased (P < 0.01), and expression of TNFR1, TRADDD, and RIP1 was decreased in the HPM group of WT mice (P(TNFR1) < 0.05, P(TRADD) < 0.01, P(RIP1) < 0.01). Both of the co-expression of A20/TRADD and A20/RIP1 showed a predominantly yellow fluorescence in the HPM group of WT mice, while a predominantly red fluorescence was noted in the HPM group of A20(IEC-KO) mice. CONCLUSION: Our findings suggest that HPM in treating Crohn’s disease functions possibly via upregulation of the A20 expression level, resulting in downregulation of TNFR1, TRADD, and RIP1 to alleviate increased cell apoptosis in the intestinal epithelial barrier in Crohn's disease. Baishideng Publishing Group Inc 2019-05-07 2019-05-07 /pmc/articles/PMC6506586/ /pubmed/31114134 http://dx.doi.org/10.3748/wjg.v25.i17.2071 Text en ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved. http://creativecommons.org/licenses/by-nc/4.0/ This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.
spellingShingle Basic Study
Zhou, Jing
Wu, Lu-Yi
Chen, Liu
Guo, Ya-Jing
Sun, Yi
Li, Tao
Zhao, Ji-Meng
Bao, Chun-Hui
Wu, Huan-Gan
Shi, Yin
Herbs-partitioned moxibustion alleviates aberrant intestinal epithelial cell apoptosis by upregulating A20 expression in a mouse model of Crohn’s disease
title Herbs-partitioned moxibustion alleviates aberrant intestinal epithelial cell apoptosis by upregulating A20 expression in a mouse model of Crohn’s disease
title_full Herbs-partitioned moxibustion alleviates aberrant intestinal epithelial cell apoptosis by upregulating A20 expression in a mouse model of Crohn’s disease
title_fullStr Herbs-partitioned moxibustion alleviates aberrant intestinal epithelial cell apoptosis by upregulating A20 expression in a mouse model of Crohn’s disease
title_full_unstemmed Herbs-partitioned moxibustion alleviates aberrant intestinal epithelial cell apoptosis by upregulating A20 expression in a mouse model of Crohn’s disease
title_short Herbs-partitioned moxibustion alleviates aberrant intestinal epithelial cell apoptosis by upregulating A20 expression in a mouse model of Crohn’s disease
title_sort herbs-partitioned moxibustion alleviates aberrant intestinal epithelial cell apoptosis by upregulating a20 expression in a mouse model of crohn’s disease
topic Basic Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506586/
https://www.ncbi.nlm.nih.gov/pubmed/31114134
http://dx.doi.org/10.3748/wjg.v25.i17.2071
work_keys_str_mv AT zhoujing herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease
AT wuluyi herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease
AT chenliu herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease
AT guoyajing herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease
AT sunyi herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease
AT litao herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease
AT zhaojimeng herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease
AT baochunhui herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease
AT wuhuangan herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease
AT shiyin herbspartitionedmoxibustionalleviatesaberrantintestinalepithelialcellapoptosisbyupregulatinga20expressioninamousemodelofcrohnsdisease