Cargando…

Tracing the Dynamic Changes of Element Profiles by Novel Soil Porewater Samplers with Ultralow Disturbance to Soil–Water Interface

[Image: see text] In flooded soils, soil–water interface (SWI) is the key zone controlling biogeochemical dynamics. Chemical species and concentrations vary greatly at micro- to cm-scales. Techniques able to track these changing element profiles both in space and over time with appropriate resolutio...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Zhao-Feng, Gustave, Williamson, Bridge, Jonathan, Liang, Yi, Sekar, Raju, Boyle, John, Jin, Chen-Yu, Pu, Tong-Yao, Ren, Yu-Xiang, Chen, Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506802/
https://www.ncbi.nlm.nih.gov/pubmed/30969102
http://dx.doi.org/10.1021/acs.est.8b05390
Descripción
Sumario:[Image: see text] In flooded soils, soil–water interface (SWI) is the key zone controlling biogeochemical dynamics. Chemical species and concentrations vary greatly at micro- to cm-scales. Techniques able to track these changing element profiles both in space and over time with appropriate resolution are rare. Here, we report a patent-pending technique, the Integrated Porewater Injection (IPI) sampler, which is designed for soil porewater sampling with minimum disturbance to saturated soil environment. IPI sampler employs a single hollow fiber membrane tube to passively sample porewater surrounding the tube. When working, it can be integrated into the sample introduction system, thus the sample preparation procedure is dramatically simplified. In this study, IPI samplers were coupled to ICP-MS at data-only mode. The limits of detection of IPI-ICP-MS for Ni, As, Cd, Sb, and Pb were 0.12, 0.67, 0.027, 0.029, and 0.074 μg·L(–1), respectively. Furthermore, 25 IPI samplers were assembled into an SWI profiler using 3D printing in a one-dimensional array. The SWI profiler is able to analyze element profiles at high spatial resolution (∼2 mm) every ≥24 h. When deployed in arsenic-contaminated paddy soils, it depicted the distributions and dynamics of multiple elements at anoxic–oxic transition. The results show that the SWI profiler is a powerful and robust technique in monitoring dynamics of element profile in soil porewater at high spatial resolution. The method will greatly facilitate studies of elements behaviors in sediments of wetland, rivers, lakes, and oceans.