Cargando…
Accounting for biological variation with linear mixed-effects modelling improves the quality of clinical metabolomics data
Metabolite profiles from biological samples suffer from both technical variations and subject-specific variants. To improve the quality of metabolomics data, conventional data processing methods can be employed to remove technical variations. These methods do not consider sources of subject variatio...
Autores principales: | Wanichthanarak, Kwanjeera, Jeamsripong, Saharuetai, Pornputtapong, Natapol, Khoomrung, Sakda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506811/ https://www.ncbi.nlm.nih.gov/pubmed/31110642 http://dx.doi.org/10.1016/j.csbj.2019.04.009 |
Ejemplares similares
-
Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine
por: Grapov, Dmitry, et al.
Publicado: (2018) -
A dedicated database system for handling multi-level data in systems biology
por: Pornputtapong, Natapol, et al.
Publicado: (2014) -
Deep metabolome: Applications of deep learning in metabolomics
por: Pomyen, Yotsawat, et al.
Publicado: (2020) -
Metabolomics and Integrative Omics for the Development of Thai Traditional Medicine
por: Khoomrung, Sakda, et al.
Publicado: (2017) -
CRISP: a deep learning architecture for GC × GC–TOFMS contour ROI identification, simulation and analysis in imaging metabolomics
por: Mathema, Vivek Bhakta, et al.
Publicado: (2022)