Cargando…
A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: simulation and application
BACKGROUND: In clinical and epidemiological researches, continuous predictors are often discretized into categorical variables for classification of patients. When the relationship between a continuous predictor and log relative hazards is U-shaped in survival data, there is a lack of a satisfying s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507062/ https://www.ncbi.nlm.nih.gov/pubmed/31072334 http://dx.doi.org/10.1186/s12874-019-0738-4 |
_version_ | 1783416954555465728 |
---|---|
author | Chen, Yimin Huang, Jialing He, Xianying Gao, Yongxiang Mahara, Gehendra Lin, Zhuochen Zhang, Jinxin |
author_facet | Chen, Yimin Huang, Jialing He, Xianying Gao, Yongxiang Mahara, Gehendra Lin, Zhuochen Zhang, Jinxin |
author_sort | Chen, Yimin |
collection | PubMed |
description | BACKGROUND: In clinical and epidemiological researches, continuous predictors are often discretized into categorical variables for classification of patients. When the relationship between a continuous predictor and log relative hazards is U-shaped in survival data, there is a lack of a satisfying solution to find optimal cut-points to discretize the continuous predictor. In this study, we propose a novel approach named optimal equal-HR method to discretize a continuous variable that has a U-shaped relationship with log relative hazards in survival data. METHODS: The main idea of the optimal equal-HR method is to find two optimal cut-points that have equal log relative hazard values and result in Cox models with minimum AIC value. An R package ‘CutpointsOEHR’ has been developed for easy implementation of the optimal equal-HR method. A Monte Carlo simulation study was carried out to investigate the performance of the optimal equal-HR method. In the simulation process, different censoring proportions, baseline hazard functions and asymmetry levels of U-shaped relationships were chosen. To compare the optimal equal-HR method with other common approaches, the predictive performance of Cox models with variables discretized by different cut-points was assessed. RESULTS: Simulation results showed that in asymmetric U-shape scenarios the optimal equal-HR method had better performance than the median split method, the upper and lower quantiles method, and the minimum p-value method regarding discrimination ability and overall performance of Cox models. The optimal equal-HR method was applied to a real dataset of small cell lung cancer. The real data example demonstrated that the optimal equal-HR method could provide clinical meaningful cut-points and had good predictive performance in Cox models. CONCLUSIONS: In general, the optimal equal-HR method is recommended to discretize a continuous predictor with right-censored outcomes if the predictor has an asymmetric U-shaped relationship with log relative hazards based on Cox regression models. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12874-019-0738-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6507062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65070622019-05-13 A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: simulation and application Chen, Yimin Huang, Jialing He, Xianying Gao, Yongxiang Mahara, Gehendra Lin, Zhuochen Zhang, Jinxin BMC Med Res Methodol Technical Advance BACKGROUND: In clinical and epidemiological researches, continuous predictors are often discretized into categorical variables for classification of patients. When the relationship between a continuous predictor and log relative hazards is U-shaped in survival data, there is a lack of a satisfying solution to find optimal cut-points to discretize the continuous predictor. In this study, we propose a novel approach named optimal equal-HR method to discretize a continuous variable that has a U-shaped relationship with log relative hazards in survival data. METHODS: The main idea of the optimal equal-HR method is to find two optimal cut-points that have equal log relative hazard values and result in Cox models with minimum AIC value. An R package ‘CutpointsOEHR’ has been developed for easy implementation of the optimal equal-HR method. A Monte Carlo simulation study was carried out to investigate the performance of the optimal equal-HR method. In the simulation process, different censoring proportions, baseline hazard functions and asymmetry levels of U-shaped relationships were chosen. To compare the optimal equal-HR method with other common approaches, the predictive performance of Cox models with variables discretized by different cut-points was assessed. RESULTS: Simulation results showed that in asymmetric U-shape scenarios the optimal equal-HR method had better performance than the median split method, the upper and lower quantiles method, and the minimum p-value method regarding discrimination ability and overall performance of Cox models. The optimal equal-HR method was applied to a real dataset of small cell lung cancer. The real data example demonstrated that the optimal equal-HR method could provide clinical meaningful cut-points and had good predictive performance in Cox models. CONCLUSIONS: In general, the optimal equal-HR method is recommended to discretize a continuous predictor with right-censored outcomes if the predictor has an asymmetric U-shaped relationship with log relative hazards based on Cox regression models. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12874-019-0738-4) contains supplementary material, which is available to authorized users. BioMed Central 2019-05-09 /pmc/articles/PMC6507062/ /pubmed/31072334 http://dx.doi.org/10.1186/s12874-019-0738-4 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Technical Advance Chen, Yimin Huang, Jialing He, Xianying Gao, Yongxiang Mahara, Gehendra Lin, Zhuochen Zhang, Jinxin A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: simulation and application |
title | A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: simulation and application |
title_full | A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: simulation and application |
title_fullStr | A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: simulation and application |
title_full_unstemmed | A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: simulation and application |
title_short | A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: simulation and application |
title_sort | novel approach to determine two optimal cut-points of a continuous predictor with a u-shaped relationship to hazard ratio in survival data: simulation and application |
topic | Technical Advance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507062/ https://www.ncbi.nlm.nih.gov/pubmed/31072334 http://dx.doi.org/10.1186/s12874-019-0738-4 |
work_keys_str_mv | AT chenyimin anovelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT huangjialing anovelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT hexianying anovelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT gaoyongxiang anovelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT maharagehendra anovelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT linzhuochen anovelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT zhangjinxin anovelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT chenyimin novelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT huangjialing novelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT hexianying novelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT gaoyongxiang novelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT maharagehendra novelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT linzhuochen novelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication AT zhangjinxin novelapproachtodeterminetwooptimalcutpointsofacontinuouspredictorwithaushapedrelationshiptohazardratioinsurvivaldatasimulationandapplication |