Cargando…
The Impact of Pyroglutamate: Sulfolobus acidocaldarius Has a Growth Advantage over Saccharolobus solfataricus in Glutamate-Containing Media
Microorganisms are well adapted to their habitat but are partially sensitive to toxic metabolites or abiotic compounds secreted by other organisms or chemically formed under the respective environmental conditions. Thermoacidophiles are challenged by pyroglutamate, a lactam that is spontaneously for...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507225/ https://www.ncbi.nlm.nih.gov/pubmed/31178666 http://dx.doi.org/10.1155/2019/3208051 |
_version_ | 1783416988845998080 |
---|---|
author | Vetter, Anna M. Helmecke, Julia Schomburg, Dietmar Neumann-Schaal, Meina |
author_facet | Vetter, Anna M. Helmecke, Julia Schomburg, Dietmar Neumann-Schaal, Meina |
author_sort | Vetter, Anna M. |
collection | PubMed |
description | Microorganisms are well adapted to their habitat but are partially sensitive to toxic metabolites or abiotic compounds secreted by other organisms or chemically formed under the respective environmental conditions. Thermoacidophiles are challenged by pyroglutamate, a lactam that is spontaneously formed by cyclization of glutamate under aerobic thermoacidophilic conditions. It is known that growth of the thermoacidophilic crenarchaeon Saccharolobus solfataricus (formerly Sulfolobus solfataricus) is completely inhibited by pyroglutamate. In the present study, we investigated the effect of pyroglutamate on the growth of S. solfataricus and the closely related crenarchaeon Sulfolobus acidocaldarius. In contrast to S. solfataricus, S. acidocaldarius was successfully cultivated with pyroglutamate as a sole carbon source. Bioinformatical analyses showed that both members of the Sulfolobaceae have at least one candidate for a 5-oxoprolinase, which catalyses the ATP-dependent conversion of pyroglutamate to glutamate. In S. solfataricus, we observed the intracellular accumulation of pyroglutamate and crude cell extract assays showed a less effective degradation of pyroglutamate. Apparently, S. acidocaldarius seems to be less versatile regarding carbohydrates and prefers peptidolytic growth compared to S. solfataricus. Concludingly, S. acidocaldarius exhibits a more efficient utilization of pyroglutamate and is not inhibited by this compound, making it a better candidate for applications with glutamate-containing media at high temperatures. |
format | Online Article Text |
id | pubmed-6507225 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-65072252019-06-09 The Impact of Pyroglutamate: Sulfolobus acidocaldarius Has a Growth Advantage over Saccharolobus solfataricus in Glutamate-Containing Media Vetter, Anna M. Helmecke, Julia Schomburg, Dietmar Neumann-Schaal, Meina Archaea Research Article Microorganisms are well adapted to their habitat but are partially sensitive to toxic metabolites or abiotic compounds secreted by other organisms or chemically formed under the respective environmental conditions. Thermoacidophiles are challenged by pyroglutamate, a lactam that is spontaneously formed by cyclization of glutamate under aerobic thermoacidophilic conditions. It is known that growth of the thermoacidophilic crenarchaeon Saccharolobus solfataricus (formerly Sulfolobus solfataricus) is completely inhibited by pyroglutamate. In the present study, we investigated the effect of pyroglutamate on the growth of S. solfataricus and the closely related crenarchaeon Sulfolobus acidocaldarius. In contrast to S. solfataricus, S. acidocaldarius was successfully cultivated with pyroglutamate as a sole carbon source. Bioinformatical analyses showed that both members of the Sulfolobaceae have at least one candidate for a 5-oxoprolinase, which catalyses the ATP-dependent conversion of pyroglutamate to glutamate. In S. solfataricus, we observed the intracellular accumulation of pyroglutamate and crude cell extract assays showed a less effective degradation of pyroglutamate. Apparently, S. acidocaldarius seems to be less versatile regarding carbohydrates and prefers peptidolytic growth compared to S. solfataricus. Concludingly, S. acidocaldarius exhibits a more efficient utilization of pyroglutamate and is not inhibited by this compound, making it a better candidate for applications with glutamate-containing media at high temperatures. Hindawi 2019-04-24 /pmc/articles/PMC6507225/ /pubmed/31178666 http://dx.doi.org/10.1155/2019/3208051 Text en Copyright © 2019 Anna M. Vetter et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Vetter, Anna M. Helmecke, Julia Schomburg, Dietmar Neumann-Schaal, Meina The Impact of Pyroglutamate: Sulfolobus acidocaldarius Has a Growth Advantage over Saccharolobus solfataricus in Glutamate-Containing Media |
title | The Impact of Pyroglutamate: Sulfolobus acidocaldarius Has a Growth Advantage over Saccharolobus solfataricus in Glutamate-Containing Media |
title_full | The Impact of Pyroglutamate: Sulfolobus acidocaldarius Has a Growth Advantage over Saccharolobus solfataricus in Glutamate-Containing Media |
title_fullStr | The Impact of Pyroglutamate: Sulfolobus acidocaldarius Has a Growth Advantage over Saccharolobus solfataricus in Glutamate-Containing Media |
title_full_unstemmed | The Impact of Pyroglutamate: Sulfolobus acidocaldarius Has a Growth Advantage over Saccharolobus solfataricus in Glutamate-Containing Media |
title_short | The Impact of Pyroglutamate: Sulfolobus acidocaldarius Has a Growth Advantage over Saccharolobus solfataricus in Glutamate-Containing Media |
title_sort | impact of pyroglutamate: sulfolobus acidocaldarius has a growth advantage over saccharolobus solfataricus in glutamate-containing media |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507225/ https://www.ncbi.nlm.nih.gov/pubmed/31178666 http://dx.doi.org/10.1155/2019/3208051 |
work_keys_str_mv | AT vetterannam theimpactofpyroglutamatesulfolobusacidocaldariushasagrowthadvantageoversaccharolobussolfataricusinglutamatecontainingmedia AT helmeckejulia theimpactofpyroglutamatesulfolobusacidocaldariushasagrowthadvantageoversaccharolobussolfataricusinglutamatecontainingmedia AT schomburgdietmar theimpactofpyroglutamatesulfolobusacidocaldariushasagrowthadvantageoversaccharolobussolfataricusinglutamatecontainingmedia AT neumannschaalmeina theimpactofpyroglutamatesulfolobusacidocaldariushasagrowthadvantageoversaccharolobussolfataricusinglutamatecontainingmedia AT vetterannam impactofpyroglutamatesulfolobusacidocaldariushasagrowthadvantageoversaccharolobussolfataricusinglutamatecontainingmedia AT helmeckejulia impactofpyroglutamatesulfolobusacidocaldariushasagrowthadvantageoversaccharolobussolfataricusinglutamatecontainingmedia AT schomburgdietmar impactofpyroglutamatesulfolobusacidocaldariushasagrowthadvantageoversaccharolobussolfataricusinglutamatecontainingmedia AT neumannschaalmeina impactofpyroglutamatesulfolobusacidocaldariushasagrowthadvantageoversaccharolobussolfataricusinglutamatecontainingmedia |