Cargando…

Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study

Efficient exchange of nutrients and wastes required for cell proliferation and differentiation plays a pivotal role in improving the service life of porous implants. In this study, mass transport properties for porous implant with different unit cells were evaluated and predicted when the porosities...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jian, Chen, Diansheng, Fan, Yubo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507231/
https://www.ncbi.nlm.nih.gov/pubmed/31179318
http://dx.doi.org/10.1155/2019/3610785
_version_ 1783416990284644352
author Li, Jian
Chen, Diansheng
Fan, Yubo
author_facet Li, Jian
Chen, Diansheng
Fan, Yubo
author_sort Li, Jian
collection PubMed
description Efficient exchange of nutrients and wastes required for cell proliferation and differentiation plays a pivotal role in improving the service life of porous implants. In this study, mass transport properties for porous implant with different unit cells were evaluated and predicted when the porosities are kept the same. To this end, three typical unit cells (diamond (DO), rhombic dodecahedron (RD), and octet truss (OT)) were selected, in which DO displayed diagonal-symmetrical shape, while RD and OT share midline-symmetrical structure. Then, single unit cells were designed quantitatively, and its shape parameters were measured and calculated. Moreover, corresponding porous scaffolds with same outline size were created, respectively. Furthermore, using computational fluid dynamics (CFD) methodology, flow performances with Dulbecco's Modified Eagle's Medium (DMEM) in vitro were simulated for three different porous implants, and flow trajectory, velocity, and wall shear stress which could reflect the properties of mass transfer and tissue regeneration were compared and predicted numerically. Results demonstrated that different unit cell could directly lead to different mass transport properties for porous implant, in spite of same porosity, scaffold size, and service environment. Additionally, by the results, DO displayed greater tortuosity, more appropriate areas, and smoother shear stress distribution than RD and OT, which would provide better surroundings for implant fixation and tissue regeneration. However, RD and OT showed better mass transport properties because of bigger maximum velocity (5.177 mm/s, 4.381 mm/s) than DO (3.941 mm/s). This study would provide great helps for unit cell selection and biological performance optimization for 3D printed bone implants.
format Online
Article
Text
id pubmed-6507231
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-65072312019-06-09 Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study Li, Jian Chen, Diansheng Fan, Yubo Biomed Res Int Research Article Efficient exchange of nutrients and wastes required for cell proliferation and differentiation plays a pivotal role in improving the service life of porous implants. In this study, mass transport properties for porous implant with different unit cells were evaluated and predicted when the porosities are kept the same. To this end, three typical unit cells (diamond (DO), rhombic dodecahedron (RD), and octet truss (OT)) were selected, in which DO displayed diagonal-symmetrical shape, while RD and OT share midline-symmetrical structure. Then, single unit cells were designed quantitatively, and its shape parameters were measured and calculated. Moreover, corresponding porous scaffolds with same outline size were created, respectively. Furthermore, using computational fluid dynamics (CFD) methodology, flow performances with Dulbecco's Modified Eagle's Medium (DMEM) in vitro were simulated for three different porous implants, and flow trajectory, velocity, and wall shear stress which could reflect the properties of mass transfer and tissue regeneration were compared and predicted numerically. Results demonstrated that different unit cell could directly lead to different mass transport properties for porous implant, in spite of same porosity, scaffold size, and service environment. Additionally, by the results, DO displayed greater tortuosity, more appropriate areas, and smoother shear stress distribution than RD and OT, which would provide better surroundings for implant fixation and tissue regeneration. However, RD and OT showed better mass transport properties because of bigger maximum velocity (5.177 mm/s, 4.381 mm/s) than DO (3.941 mm/s). This study would provide great helps for unit cell selection and biological performance optimization for 3D printed bone implants. Hindawi 2019-04-23 /pmc/articles/PMC6507231/ /pubmed/31179318 http://dx.doi.org/10.1155/2019/3610785 Text en Copyright © 2019 Jian Li et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Jian
Chen, Diansheng
Fan, Yubo
Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study
title Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study
title_full Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study
title_fullStr Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study
title_full_unstemmed Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study
title_short Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study
title_sort evaluation and prediction of mass transport properties for porous implant with different unit cells: a numerical study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507231/
https://www.ncbi.nlm.nih.gov/pubmed/31179318
http://dx.doi.org/10.1155/2019/3610785
work_keys_str_mv AT lijian evaluationandpredictionofmasstransportpropertiesforporousimplantwithdifferentunitcellsanumericalstudy
AT chendiansheng evaluationandpredictionofmasstransportpropertiesforporousimplantwithdifferentunitcellsanumericalstudy
AT fanyubo evaluationandpredictionofmasstransportpropertiesforporousimplantwithdifferentunitcellsanumericalstudy