Cargando…
Small RNA-seq: The RNA 5’-end adapter ligation problem and how to circumvent it
The preparation of small RNA cDNA sequencing libraries depends on the unbiased ligation of adapters to the RNA ends. Small RNA with 5’ recessed ends are poor substrates for enzymatic adapter ligation, but this 5’ adapter ligation problem can go undetected if the library preparation steps are not mon...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Journal of Biological Methods
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507418/ https://www.ncbi.nlm.nih.gov/pubmed/31080843 http://dx.doi.org/10.14440/jbm.2019.269 |
_version_ | 1783417024444104704 |
---|---|
author | Lama, Lodoe Cobo, Jose Buenaventura, Diego Ryan, Kevin |
author_facet | Lama, Lodoe Cobo, Jose Buenaventura, Diego Ryan, Kevin |
author_sort | Lama, Lodoe |
collection | PubMed |
description | The preparation of small RNA cDNA sequencing libraries depends on the unbiased ligation of adapters to the RNA ends. Small RNA with 5’ recessed ends are poor substrates for enzymatic adapter ligation, but this 5’ adapter ligation problem can go undetected if the library preparation steps are not monitored. Here we illustrate the severity of the 5’ RNA end ligation problem using several pre-miRNA-like hairpins that allow us to expand the definition of the problem to include 5’ ends close to a hairpin stem, whether recessed or in a short extension. The ribosome profiling method can avoid a difficult 5’ adapter ligation, but the enzyme typically used to circularize the cDNA has been reported to be biased, calling into question the benefit of this workaround. Using the TS2126 RNA ligase 1 (a.k.a. CircLigase) as the circularizing enzyme, we devised a bias test for the circularization of first strand cDNA. All possible dinucleotides were circle-ligated with similar efficiency. To re-linearize the first strand cDNA in the ribosome profiling approach, we introduce an improved method wherein a single ribonucleotide is placed between the sequencing primer binding sites in the reverse transcriptase primer, which later serves as the point of re-linearization by RNase A. We incorporate this step into the ribosomal profiling method and describe a complete improved library preparation method, Coligo-seq, for the sequencing of small RNA with secondary structure close to the 5’ end. This method accepts a variety of 5’ modified RNA, including 5’ monophosphorylated RNA, as demonstrated by the construction of a HeLa cell microRNA cDNA library. |
format | Online Article Text |
id | pubmed-6507418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Journal of Biological Methods |
record_format | MEDLINE/PubMed |
spelling | pubmed-65074182019-05-09 Small RNA-seq: The RNA 5’-end adapter ligation problem and how to circumvent it Lama, Lodoe Cobo, Jose Buenaventura, Diego Ryan, Kevin J Biol Methods Article The preparation of small RNA cDNA sequencing libraries depends on the unbiased ligation of adapters to the RNA ends. Small RNA with 5’ recessed ends are poor substrates for enzymatic adapter ligation, but this 5’ adapter ligation problem can go undetected if the library preparation steps are not monitored. Here we illustrate the severity of the 5’ RNA end ligation problem using several pre-miRNA-like hairpins that allow us to expand the definition of the problem to include 5’ ends close to a hairpin stem, whether recessed or in a short extension. The ribosome profiling method can avoid a difficult 5’ adapter ligation, but the enzyme typically used to circularize the cDNA has been reported to be biased, calling into question the benefit of this workaround. Using the TS2126 RNA ligase 1 (a.k.a. CircLigase) as the circularizing enzyme, we devised a bias test for the circularization of first strand cDNA. All possible dinucleotides were circle-ligated with similar efficiency. To re-linearize the first strand cDNA in the ribosome profiling approach, we introduce an improved method wherein a single ribonucleotide is placed between the sequencing primer binding sites in the reverse transcriptase primer, which later serves as the point of re-linearization by RNase A. We incorporate this step into the ribosomal profiling method and describe a complete improved library preparation method, Coligo-seq, for the sequencing of small RNA with secondary structure close to the 5’ end. This method accepts a variety of 5’ modified RNA, including 5’ monophosphorylated RNA, as demonstrated by the construction of a HeLa cell microRNA cDNA library. Journal of Biological Methods 2019-02-20 /pmc/articles/PMC6507418/ /pubmed/31080843 http://dx.doi.org/10.14440/jbm.2019.269 Text en © 2019 The Journal of Biological Methods, All rights reserved. https://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution 3.0 License. |
spellingShingle | Article Lama, Lodoe Cobo, Jose Buenaventura, Diego Ryan, Kevin Small RNA-seq: The RNA 5’-end adapter ligation problem and how to circumvent it |
title | Small RNA-seq: The RNA 5’-end adapter ligation problem and how to circumvent it |
title_full | Small RNA-seq: The RNA 5’-end adapter ligation problem and how to circumvent it |
title_fullStr | Small RNA-seq: The RNA 5’-end adapter ligation problem and how to circumvent it |
title_full_unstemmed | Small RNA-seq: The RNA 5’-end adapter ligation problem and how to circumvent it |
title_short | Small RNA-seq: The RNA 5’-end adapter ligation problem and how to circumvent it |
title_sort | small rna-seq: the rna 5’-end adapter ligation problem and how to circumvent it |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507418/ https://www.ncbi.nlm.nih.gov/pubmed/31080843 http://dx.doi.org/10.14440/jbm.2019.269 |
work_keys_str_mv | AT lamalodoe smallrnaseqtherna5endadapterligationproblemandhowtocircumventit AT cobojose smallrnaseqtherna5endadapterligationproblemandhowtocircumventit AT buenaventuradiego smallrnaseqtherna5endadapterligationproblemandhowtocircumventit AT ryankevin smallrnaseqtherna5endadapterligationproblemandhowtocircumventit |