Cargando…

The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System

Minkowski space is shown to be globally stable as a solution to the Einstein–Vlasov system in the case when all particles have zero mass. The proof proceeds by showing that the matter must be supported in the “wave zone”, and then proving a small data semi-global existence result for the characteris...

Descripción completa

Detalles Bibliográficos
Autor principal: Taylor, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507450/
https://www.ncbi.nlm.nih.gov/pubmed/31149657
http://dx.doi.org/10.1007/s40818-017-0026-8
Descripción
Sumario:Minkowski space is shown to be globally stable as a solution to the Einstein–Vlasov system in the case when all particles have zero mass. The proof proceeds by showing that the matter must be supported in the “wave zone”, and then proving a small data semi-global existence result for the characteristic initial value problem for the massless Einstein–Vlasov system in this region. This relies on weighted estimates for the solution which, for the Vlasov part, are obtained by introducing the Sasaki metric on the mass shell and estimating Jacobi fields with respect to this metric by geometric quantities on the spacetime. The stability of Minkowski space result for the vacuum Einstein equations is then appealed to for the remaining regions.