Cargando…

The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System

Minkowski space is shown to be globally stable as a solution to the Einstein–Vlasov system in the case when all particles have zero mass. The proof proceeds by showing that the matter must be supported in the “wave zone”, and then proving a small data semi-global existence result for the characteris...

Descripción completa

Detalles Bibliográficos
Autor principal: Taylor, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507450/
https://www.ncbi.nlm.nih.gov/pubmed/31149657
http://dx.doi.org/10.1007/s40818-017-0026-8
_version_ 1783417028747460608
author Taylor, Martin
author_facet Taylor, Martin
author_sort Taylor, Martin
collection PubMed
description Minkowski space is shown to be globally stable as a solution to the Einstein–Vlasov system in the case when all particles have zero mass. The proof proceeds by showing that the matter must be supported in the “wave zone”, and then proving a small data semi-global existence result for the characteristic initial value problem for the massless Einstein–Vlasov system in this region. This relies on weighted estimates for the solution which, for the Vlasov part, are obtained by introducing the Sasaki metric on the mass shell and estimating Jacobi fields with respect to this metric by geometric quantities on the spacetime. The stability of Minkowski space result for the vacuum Einstein equations is then appealed to for the remaining regions.
format Online
Article
Text
id pubmed-6507450
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-65074502019-05-28 The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System Taylor, Martin Ann PDE Article Minkowski space is shown to be globally stable as a solution to the Einstein–Vlasov system in the case when all particles have zero mass. The proof proceeds by showing that the matter must be supported in the “wave zone”, and then proving a small data semi-global existence result for the characteristic initial value problem for the massless Einstein–Vlasov system in this region. This relies on weighted estimates for the solution which, for the Vlasov part, are obtained by introducing the Sasaki metric on the mass shell and estimating Jacobi fields with respect to this metric by geometric quantities on the spacetime. The stability of Minkowski space result for the vacuum Einstein equations is then appealed to for the remaining regions. Springer International Publishing 2017-03-28 2017 /pmc/articles/PMC6507450/ /pubmed/31149657 http://dx.doi.org/10.1007/s40818-017-0026-8 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Taylor, Martin
The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System
title The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System
title_full The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System
title_fullStr The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System
title_full_unstemmed The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System
title_short The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System
title_sort global nonlinear stability of minkowski space for the massless einstein–vlasov system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507450/
https://www.ncbi.nlm.nih.gov/pubmed/31149657
http://dx.doi.org/10.1007/s40818-017-0026-8
work_keys_str_mv AT taylormartin theglobalnonlinearstabilityofminkowskispaceforthemasslesseinsteinvlasovsystem
AT taylormartin globalnonlinearstabilityofminkowskispaceforthemasslesseinsteinvlasovsystem