Cargando…
Augmented Weighted Estimators Dealing with Practical Positivity Violation to Causal inferences in a Random Coefficient Model
The inverse probability of treatment weighted (IPTW) estimator can be used to make causal inferences under two assumptions: (1) no unobserved confounders (ignorability) and (2) positive probability of treatment and of control at every level of the confounders (positivity), but is vulnerable to bias...
Autores principales: | Wang, Mary Ying-Fang, Tuss, Paul, Qi, Lihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507518/ https://www.ncbi.nlm.nih.gov/pubmed/30877425 http://dx.doi.org/10.1007/s11336-018-09657-y |
Ejemplares similares
-
Causal Inference in Multisensory Heading Estimation
por: de Winkel, Ksander N., et al.
Publicado: (2017) -
Causal inference and effect estimation using observational data
por: Igelström, Erik, et al.
Publicado: (2022) -
Bayesian identification of structural coefficients in causal models and the causal false-positive risk of confounders and colliders in linear Markovian models
por: Kelter, Riko
Publicado: (2022) -
Causal inference in econometrics
por: Huynh, Van-Nam, et al.
Publicado: (2016) -
Neural dynamics of causal inference in the macaque frontoparietal circuit
por: Qi, Guangyao, et al.
Publicado: (2022)