Cargando…

Twinning behavior of orthorhombic-α” martensite in a Ti-7.5Mo alloy

Deformation microstructure of orthorhombic-α” martensite in a Ti-7.5Mo (wt.%) alloy was investigated by tracking a local area of microstructure using scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy. The as-quenched α” plates contain {111}(α”)-t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Xin, Gutierrez-Urrutia, Ivan, Emura, Satoshi, Liu, Tianwei, Hara, Toru, Min, Xiaohua, Ping, Dehai, Tsuchiya, Koichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508061/
https://www.ncbi.nlm.nih.gov/pubmed/31105803
http://dx.doi.org/10.1080/14686996.2019.1600201
Descripción
Sumario:Deformation microstructure of orthorhombic-α” martensite in a Ti-7.5Mo (wt.%) alloy was investigated by tracking a local area of microstructure using scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy. The as-quenched α” plates contain {111}(α”)-type I transformation twins generated to accommodate transformation strain from bcc-β to orthorhombic-α” martensite. Tensile deformation up to strain level of 5% induces {112}(α”)-type I deformation twins. The activation of {112}(α”)-type I deformation twinning mode is reported for the first time in α” martensite in β-Ti alloys. {112}(α”)-type I twinning mode was analyzed by the crystallographic twinning theory by Bilby and Crocker and the most possible mechanism of atomic displacements (shears and shuffles) controlling the newly reported {112}(α”)-type I twinning were proposed.