Cargando…
Utilizing random regression models for genomic prediction of a longitudinal trait derived from high‐throughput phenotyping
The accessibility of high‐throughput phenotyping platforms in both the greenhouse and field, as well as the relatively low cost of unmanned aerial vehicles, has provided researchers with an effective means to characterize large populations throughout the growing season. These longitudinal phenotypes...
Autores principales: | Campbell, Malachy, Walia, Harkamal, Morota, Gota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508851/ https://www.ncbi.nlm.nih.gov/pubmed/31245746 http://dx.doi.org/10.1002/pld3.80 |
Ejemplares similares
-
Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping
por: Baba, Toshimi, et al.
Publicado: (2020) -
Predicting Longitudinal Traits Derived from High-Throughput Phenomics in Contrasting Environments Using Genomic Legendre Polynomials and B-Splines
por: Momen, Mehdi, et al.
Publicado: (2019) -
Utilizing trait networks and structural equation models as tools to interpret multi-trait genome-wide association studies
por: Momen, Mehdi, et al.
Publicado: (2019) -
ShinyAIM: Shiny‐based application of interactive Manhattan plots for longitudinal genome‐wide association studies
por: Hussain, Waseem, et al.
Publicado: (2018) -
Genomic Bayesian Confirmatory Factor Analysis and Bayesian Network To Characterize a Wide Spectrum of Rice Phenotypes
por: Yu, Haipeng, et al.
Publicado: (2019)