Cargando…

Integration of bilateral nociceptive inputs tunes spinal and cerebral responses

Together with the nociceptive system, pain protects the body from tissue damage. For instance, when the RIII-reflex is evoked by sural nerve stimulation, nociceptive inputs activate flexor muscles and inhibit extensor muscles of the affected lower limb while producing the opposite effects on the con...

Descripción completa

Detalles Bibliográficos
Autores principales: Rustamov, Nabi, Northon, Stéphane, Tessier, Jessica, Leblond, Hugues, Piché, Mathieu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509112/
https://www.ncbi.nlm.nih.gov/pubmed/31073138
http://dx.doi.org/10.1038/s41598-019-43567-y
Descripción
Sumario:Together with the nociceptive system, pain protects the body from tissue damage. For instance, when the RIII-reflex is evoked by sural nerve stimulation, nociceptive inputs activate flexor muscles and inhibit extensor muscles of the affected lower limb while producing the opposite effects on the contralateral muscles. But how do the spinal cord and brain integrate concurrent sensorimotor information originating from both limbs? This is critical for evoking coordinated responses to nociceptive stimuli, but has been overlooked. Here we show that the spinal cord integrates spinal inhibitory and descending facilitatory inputs during concurrent bilateral foot stimulation, resulting in facilitation of the RIII-reflex and bilateral flexion. In these conditions, high-gamma oscillation power was also increased in the dorsolateral prefrontal, anterior cingulate and sensorimotor cortex, in accordance with the involvement of these regions in cognitive, motor and pain regulation. We propose that the brain and spinal cord can fine-tune nociceptive and pain responses when nociceptive inputs arise from both lower limbs concurrently, in order to allow adaptable behavioural responses.