Cargando…

A colloidal quantum dot infrared photodetector and its use for intraband detection

Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gai...

Descripción completa

Detalles Bibliográficos
Autores principales: Livache, Clément, Martinez, Bertille, Goubet, Nicolas, Gréboval, Charlie, Qu, Junling, Chu, Audrey, Royer, Sébastien, Ithurria, Sandrine, Silly, Mathieu G., Dubertret, Benoit, Lhuillier, Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509134/
https://www.ncbi.nlm.nih.gov/pubmed/31073132
http://dx.doi.org/10.1038/s41467-019-10170-8
_version_ 1783417184705314816
author Livache, Clément
Martinez, Bertille
Goubet, Nicolas
Gréboval, Charlie
Qu, Junling
Chu, Audrey
Royer, Sébastien
Ithurria, Sandrine
Silly, Mathieu G.
Dubertret, Benoit
Lhuillier, Emmanuel
author_facet Livache, Clément
Martinez, Bertille
Goubet, Nicolas
Gréboval, Charlie
Qu, Junling
Chu, Audrey
Royer, Sébastien
Ithurria, Sandrine
Silly, Mathieu G.
Dubertret, Benoit
Lhuillier, Emmanuel
author_sort Livache, Clément
collection PubMed
description Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices.
format Online
Article
Text
id pubmed-6509134
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65091342019-05-13 A colloidal quantum dot infrared photodetector and its use for intraband detection Livache, Clément Martinez, Bertille Goubet, Nicolas Gréboval, Charlie Qu, Junling Chu, Audrey Royer, Sébastien Ithurria, Sandrine Silly, Mathieu G. Dubertret, Benoit Lhuillier, Emmanuel Nat Commun Article Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices. Nature Publishing Group UK 2019-05-09 /pmc/articles/PMC6509134/ /pubmed/31073132 http://dx.doi.org/10.1038/s41467-019-10170-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Livache, Clément
Martinez, Bertille
Goubet, Nicolas
Gréboval, Charlie
Qu, Junling
Chu, Audrey
Royer, Sébastien
Ithurria, Sandrine
Silly, Mathieu G.
Dubertret, Benoit
Lhuillier, Emmanuel
A colloidal quantum dot infrared photodetector and its use for intraband detection
title A colloidal quantum dot infrared photodetector and its use for intraband detection
title_full A colloidal quantum dot infrared photodetector and its use for intraband detection
title_fullStr A colloidal quantum dot infrared photodetector and its use for intraband detection
title_full_unstemmed A colloidal quantum dot infrared photodetector and its use for intraband detection
title_short A colloidal quantum dot infrared photodetector and its use for intraband detection
title_sort colloidal quantum dot infrared photodetector and its use for intraband detection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509134/
https://www.ncbi.nlm.nih.gov/pubmed/31073132
http://dx.doi.org/10.1038/s41467-019-10170-8
work_keys_str_mv AT livacheclement acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT martinezbertille acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT goubetnicolas acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT grebovalcharlie acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT qujunling acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT chuaudrey acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT royersebastien acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT ithurriasandrine acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT sillymathieug acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT dubertretbenoit acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT lhuillieremmanuel acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT livacheclement colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT martinezbertille colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT goubetnicolas colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT grebovalcharlie colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT qujunling colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT chuaudrey colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT royersebastien colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT ithurriasandrine colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT sillymathieug colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT dubertretbenoit colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection
AT lhuillieremmanuel colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection