Cargando…
A colloidal quantum dot infrared photodetector and its use for intraband detection
Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gai...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509134/ https://www.ncbi.nlm.nih.gov/pubmed/31073132 http://dx.doi.org/10.1038/s41467-019-10170-8 |
_version_ | 1783417184705314816 |
---|---|
author | Livache, Clément Martinez, Bertille Goubet, Nicolas Gréboval, Charlie Qu, Junling Chu, Audrey Royer, Sébastien Ithurria, Sandrine Silly, Mathieu G. Dubertret, Benoit Lhuillier, Emmanuel |
author_facet | Livache, Clément Martinez, Bertille Goubet, Nicolas Gréboval, Charlie Qu, Junling Chu, Audrey Royer, Sébastien Ithurria, Sandrine Silly, Mathieu G. Dubertret, Benoit Lhuillier, Emmanuel |
author_sort | Livache, Clément |
collection | PubMed |
description | Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices. |
format | Online Article Text |
id | pubmed-6509134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-65091342019-05-13 A colloidal quantum dot infrared photodetector and its use for intraband detection Livache, Clément Martinez, Bertille Goubet, Nicolas Gréboval, Charlie Qu, Junling Chu, Audrey Royer, Sébastien Ithurria, Sandrine Silly, Mathieu G. Dubertret, Benoit Lhuillier, Emmanuel Nat Commun Article Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices. Nature Publishing Group UK 2019-05-09 /pmc/articles/PMC6509134/ /pubmed/31073132 http://dx.doi.org/10.1038/s41467-019-10170-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Livache, Clément Martinez, Bertille Goubet, Nicolas Gréboval, Charlie Qu, Junling Chu, Audrey Royer, Sébastien Ithurria, Sandrine Silly, Mathieu G. Dubertret, Benoit Lhuillier, Emmanuel A colloidal quantum dot infrared photodetector and its use for intraband detection |
title | A colloidal quantum dot infrared photodetector and its use for intraband detection |
title_full | A colloidal quantum dot infrared photodetector and its use for intraband detection |
title_fullStr | A colloidal quantum dot infrared photodetector and its use for intraband detection |
title_full_unstemmed | A colloidal quantum dot infrared photodetector and its use for intraband detection |
title_short | A colloidal quantum dot infrared photodetector and its use for intraband detection |
title_sort | colloidal quantum dot infrared photodetector and its use for intraband detection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509134/ https://www.ncbi.nlm.nih.gov/pubmed/31073132 http://dx.doi.org/10.1038/s41467-019-10170-8 |
work_keys_str_mv | AT livacheclement acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT martinezbertille acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT goubetnicolas acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT grebovalcharlie acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT qujunling acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT chuaudrey acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT royersebastien acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT ithurriasandrine acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT sillymathieug acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT dubertretbenoit acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT lhuillieremmanuel acolloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT livacheclement colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT martinezbertille colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT goubetnicolas colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT grebovalcharlie colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT qujunling colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT chuaudrey colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT royersebastien colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT ithurriasandrine colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT sillymathieug colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT dubertretbenoit colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection AT lhuillieremmanuel colloidalquantumdotinfraredphotodetectoranditsuseforintrabanddetection |