Cargando…
Atmospheric Circulation Patterns Associated with Extreme United States Floods Identified via Machine Learning
The massive socioeconomic impacts engendered by extreme floods provides a clear motivation for improved understanding of flood drivers. We use self-organizing maps, a type of artificial neural network, to perform unsupervised clustering of climate reanalysis data to identify synoptic-scale atmospher...
Autores principales: | Schlef, Katherine E., Moradkhani, Hamid, Lall, Upmanu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509142/ https://www.ncbi.nlm.nih.gov/pubmed/31073192 http://dx.doi.org/10.1038/s41598-019-43496-w |
Ejemplares similares
-
A Place-based Assessment of Flash Flood Hazard and Vulnerability in the Contiguous United States
por: Khajehei, Sepideh, et al.
Publicado: (2020) -
Atmospheric rivers drive flood damages in the western United States
por: Corringham, Thomas W., et al.
Publicado: (2019) -
Climate change contributions to future atmospheric river flood damages in the western United States
por: Corringham, Thomas W., et al.
Publicado: (2022) -
Fragmented patterns of flood change across the United States
por: Archfield, S. A., et al.
Publicado: (2016) -
The effect of seasonal and extreme floods on hospitalizations for Legionnaires’ disease in the United States, 2000–2011
por: Lynch, Victoria D., et al.
Publicado: (2022)