Cargando…
Multi-context blind source separation by error-gated Hebbian rule
Animals need to adjust their inferences according to the context they are in. This is required for the multi-context blind source separation (BSS) task, where an agent needs to infer hidden sources from their context-dependent mixtures. The agent is expected to invert this mixing process for all con...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509167/ https://www.ncbi.nlm.nih.gov/pubmed/31073206 http://dx.doi.org/10.1038/s41598-019-43423-z |
Sumario: | Animals need to adjust their inferences according to the context they are in. This is required for the multi-context blind source separation (BSS) task, where an agent needs to infer hidden sources from their context-dependent mixtures. The agent is expected to invert this mixing process for all contexts. Here, we show that a neural network that implements the error-gated Hebbian rule (EGHR) with sufficiently redundant sensory inputs can successfully learn this task. After training, the network can perform the multi-context BSS without further updating synapses, by retaining memories of all experienced contexts. This demonstrates an attractive use of the EGHR for dimensionality reduction by extracting low-dimensional sources across contexts. Finally, if there is a common feature shared across contexts, the EGHR can extract it and generalize the task to even inexperienced contexts. The results highlight the utility of the EGHR as a model for perceptual adaptation in animals. |
---|