Cargando…
Evaluating maize and soybean grain dry-down in the field with predictive algorithms and genotype-by-environment analysis
A delayed harvest of maize and soybean crops is associated with yield or revenue losses, whereas a premature harvest requires additional costs for artificial grain drying. Accurately predicting the ideal harvest date can increase profitability of US Midwest farms, but today’s predictive capacity is...
Autores principales: | Martinez-Feria, Rafael A., Licht, Mark A., Ordóñez, Raziel A., Hatfield, Jerry L., Coulter, Jeffrey A., Archontoulis, Sotirios V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509253/ https://www.ncbi.nlm.nih.gov/pubmed/31073235 http://dx.doi.org/10.1038/s41598-019-43653-1 |
Ejemplares similares
-
The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa (United States)
por: Hao, Jingjie, et al.
Publicado: (2021) -
Maize Leaf Appearance Rates: A Synthesis From the United States Corn Belt
por: dos Santos, Caio L., et al.
Publicado: (2022) -
Modeling Flood-Induced Stress in Soybeans
por: Pasley, Heather R., et al.
Publicado: (2020) -
CERES-Maize model for simulating genotype-by-environment interaction of maize and its stability in the dry and wet savannas of Nigeria
por: Adnan, A.A, et al.
Publicado: (2020) -
Genomic Prediction Strategies for Dry-Down-Related Traits in Maize
por: Ni, Pengzun, et al.
Publicado: (2022)