Cargando…

Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria

A growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and...

Descripción completa

Detalles Bibliográficos
Autores principales: Kermani, Ali A., Roy, Rana, Gopalasingam, Chai, Kocurek, Klaudia I., Patel, Trushar R., Alderwick, Luke J., Besra, Gurdyal S., Fütterer, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509496/
https://www.ncbi.nlm.nih.gov/pubmed/30877199
http://dx.doi.org/10.1074/jbc.RA118.004297
_version_ 1783417257450274816
author Kermani, Ali A.
Roy, Rana
Gopalasingam, Chai
Kocurek, Klaudia I.
Patel, Trushar R.
Alderwick, Luke J.
Besra, Gurdyal S.
Fütterer, Klaus
author_facet Kermani, Ali A.
Roy, Rana
Gopalasingam, Chai
Kocurek, Klaudia I.
Patel, Trushar R.
Alderwick, Luke J.
Besra, Gurdyal S.
Fütterer, Klaus
author_sort Kermani, Ali A.
collection PubMed
description A growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and potentially redundant metabolic pathways. Here, we report the crystal structure of the Mycobacterium smegmatis TreS:Pep2 complex, containing trehalose synthase (TreS) and maltokinase (Pep2), which converts trehalose to maltose 1-phosphate as part of the TreS:Pep2–GlgE pathway. The structure, at 3.6 Å resolution, revealed that a diamond-shaped TreS tetramer forms the core of the complex and that pairs of Pep2 monomers bind to opposite apices of the tetramer in a 4 + 4 configuration. However, for the M. smegmatis orthologues, results from isothermal titration calorimetry and analytical ultracentrifugation experiments indicated that the prevalent stoichiometry in solution is 4 TreS + 2 Pep2 protomers. The observed discrepancy between the crystallized complex and the behavior in the solution state may be explained by the relatively weak affinity of Pep2 for TreS (K(d) 3.5 μm at mildly acidic pH) and crystal packing favoring the 4 + 4 complex. Proximity of the ATP-binding site in Pep2 to the complex interface provides a rational basis for rate enhancement of Pep2 upon binding to TreS, but the complex structure appears to rule out substrate channeling between the active sites of TreS and Pep2. Our findings provide a structural model for the trehalose synthase:maltokinase complex in M. smegmatis that offers critical insights into capsule assembly.
format Online
Article
Text
id pubmed-6509496
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-65094962019-05-10 Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria Kermani, Ali A. Roy, Rana Gopalasingam, Chai Kocurek, Klaudia I. Patel, Trushar R. Alderwick, Luke J. Besra, Gurdyal S. Fütterer, Klaus J Biol Chem Microbiology A growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and potentially redundant metabolic pathways. Here, we report the crystal structure of the Mycobacterium smegmatis TreS:Pep2 complex, containing trehalose synthase (TreS) and maltokinase (Pep2), which converts trehalose to maltose 1-phosphate as part of the TreS:Pep2–GlgE pathway. The structure, at 3.6 Å resolution, revealed that a diamond-shaped TreS tetramer forms the core of the complex and that pairs of Pep2 monomers bind to opposite apices of the tetramer in a 4 + 4 configuration. However, for the M. smegmatis orthologues, results from isothermal titration calorimetry and analytical ultracentrifugation experiments indicated that the prevalent stoichiometry in solution is 4 TreS + 2 Pep2 protomers. The observed discrepancy between the crystallized complex and the behavior in the solution state may be explained by the relatively weak affinity of Pep2 for TreS (K(d) 3.5 μm at mildly acidic pH) and crystal packing favoring the 4 + 4 complex. Proximity of the ATP-binding site in Pep2 to the complex interface provides a rational basis for rate enhancement of Pep2 upon binding to TreS, but the complex structure appears to rule out substrate channeling between the active sites of TreS and Pep2. Our findings provide a structural model for the trehalose synthase:maltokinase complex in M. smegmatis that offers critical insights into capsule assembly. American Society for Biochemistry and Molecular Biology 2019-05-03 2019-03-15 /pmc/articles/PMC6509496/ /pubmed/30877199 http://dx.doi.org/10.1074/jbc.RA118.004297 Text en © 2019 Kermani et al. Published by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) .
spellingShingle Microbiology
Kermani, Ali A.
Roy, Rana
Gopalasingam, Chai
Kocurek, Klaudia I.
Patel, Trushar R.
Alderwick, Luke J.
Besra, Gurdyal S.
Fütterer, Klaus
Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria
title Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria
title_full Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria
title_fullStr Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria
title_full_unstemmed Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria
title_short Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria
title_sort crystal structure of the tres:pep2 complex, initiating α-glucan synthesis in the glge pathway of mycobacteria
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509496/
https://www.ncbi.nlm.nih.gov/pubmed/30877199
http://dx.doi.org/10.1074/jbc.RA118.004297
work_keys_str_mv AT kermanialia crystalstructureofthetrespep2complexinitiatingaglucansynthesisintheglgepathwayofmycobacteria
AT royrana crystalstructureofthetrespep2complexinitiatingaglucansynthesisintheglgepathwayofmycobacteria
AT gopalasingamchai crystalstructureofthetrespep2complexinitiatingaglucansynthesisintheglgepathwayofmycobacteria
AT kocurekklaudiai crystalstructureofthetrespep2complexinitiatingaglucansynthesisintheglgepathwayofmycobacteria
AT pateltrusharr crystalstructureofthetrespep2complexinitiatingaglucansynthesisintheglgepathwayofmycobacteria
AT alderwicklukej crystalstructureofthetrespep2complexinitiatingaglucansynthesisintheglgepathwayofmycobacteria
AT besragurdyals crystalstructureofthetrespep2complexinitiatingaglucansynthesisintheglgepathwayofmycobacteria
AT futtererklaus crystalstructureofthetrespep2complexinitiatingaglucansynthesisintheglgepathwayofmycobacteria