Cargando…
Supervised Learning in SNN via Reward-Modulated Spike-Timing-Dependent Plasticity for a Target Reaching Vehicle
Spiking neural networks (SNNs) offer many advantages over traditional artificial neural networks (ANNs) such as biological plausibility, fast information processing, and energy efficiency. Although SNNs have been used to solve a variety of control tasks using the Spike-Timing-Dependent Plasticity (S...
Autores principales: | Bing, Zhenshan, Baumann, Ivan, Jiang, Zhuangyi, Huang, Kai, Cai, Caixia, Knoll, Alois |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509616/ https://www.ncbi.nlm.nih.gov/pubmed/31130854 http://dx.doi.org/10.3389/fnbot.2019.00018 |
Ejemplares similares
-
Retina-Based Pipe-Like Object Tracking Implemented Through Spiking Neural Network on a Snake Robot
por: Jiang, Zhuangyi, et al.
Publicado: (2019) -
Perception-Action Coupling Target Tracking Control for a Snake Robot via Reinforcement Learning
por: Bing, Zhenshan, et al.
Publicado: (2020) -
A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks
por: Bing, Zhenshan, et al.
Publicado: (2018) -
Spiking Neural Network for Fourier Transform and Object Detection for Automotive Radar
por: López-Randulfe, Javier, et al.
Publicado: (2021) -
MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022)