Cargando…
aFold – using polynomial uncertainty modelling for differential gene expression estimation from RNA sequencing data
BACKGROUND: Data normalization and identification of significant differential expression represent crucial steps in RNA-Seq analysis. Many available tools rely on assumptions that are often not met by real data, including the common assumption of symmetrical distribution of up- and down-regulated ge...
Autores principales: | Yang, Wentao, Rosenstiel, Philip, Schulenburg, Hinrich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509820/ https://www.ncbi.nlm.nih.gov/pubmed/31077153 http://dx.doi.org/10.1186/s12864-019-5686-1 |
Ejemplares similares
-
ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences
por: Yang, Wentao, et al.
Publicado: (2016) -
RNAexinv: An extended inverse RNA folding from shape and physical attributes to sequences
por: Avihoo, Assaf, et al.
Publicado: (2011) -
RnaSeqSampleSize: real data based sample size estimation for RNA sequencing
por: Zhao, Shilin, et al.
Publicado: (2018) -
Cloud-scale RNA-sequencing differential expression analysis with Myrna
por: Langmead, Ben, et al.
Publicado: (2010) -
Complete Genome Sequence of Bacillus thuringiensis Strain 407 Cry-
por: Sheppard, Anna E., et al.
Publicado: (2013)