Cargando…
Generalized gene co-expression analysis via subspace clustering using low-rank representation
BACKGROUND: Gene Co-expression Network Analysis (GCNA) helps identify gene modules with potential biological functions and has become a popular method in bioinformatics and biomedical research. However, most current GCNA algorithms use correlation to build gene co-expression networks and identify mo...
Autores principales: | Wang, Tongxin, Zhang, Jie, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509871/ https://www.ncbi.nlm.nih.gov/pubmed/31074376 http://dx.doi.org/10.1186/s12859-019-2733-5 |
Ejemplares similares
-
Identifying Subspace Gene Clusters from Microarray Data Using Low-Rank Representation
por: Cui, Yan, et al.
Publicado: (2013) -
Subspace structural constraint-based discriminative feature learning via nonnegative low rank representation
por: Li, Ao, et al.
Publicado: (2019) -
LogDet Rank Minimization with Application to Subspace Clustering
por: Kang, Zhao, et al.
Publicado: (2015) -
Discriminant Subspace Low-Rank Representation Algorithm for Electroencephalography-Based Alzheimer’s Disease Recognition
por: Tang, Tusheng, et al.
Publicado: (2022) -
One-Step Robust Low-Rank Subspace Segmentation for Tumor Sample Clustering
por: Liu, Jian, et al.
Publicado: (2021)