Cargando…
Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy
Chemotherapy-induced painful peripheral neuropathy is a significant clinical problem that is associated with widely used chemotherapeutics. Unfortunately, the molecular mechanisms by which chemotherapy-induced painful peripheral neuropathy develops have remained elusive. The proteasome inhibitor, bo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509977/ https://www.ncbi.nlm.nih.gov/pubmed/31041875 http://dx.doi.org/10.1177/1744806919850043 |
_version_ | 1783417358228914176 |
---|---|
author | Ludman, Taylor Melemedjian, Ohannes K |
author_facet | Ludman, Taylor Melemedjian, Ohannes K |
author_sort | Ludman, Taylor |
collection | PubMed |
description | Chemotherapy-induced painful peripheral neuropathy is a significant clinical problem that is associated with widely used chemotherapeutics. Unfortunately, the molecular mechanisms by which chemotherapy-induced painful peripheral neuropathy develops have remained elusive. The proteasome inhibitor, bortezomib, has been shown to induce aerobic glycolysis in sensory neurons. This altered metabolic phenotype leads to the extrusion of metabolites which sensitize primary afferents and cause pain. Hypoxia-inducible factor alpha is a transcription factor that is known to reprogram cellular metabolism. Furthermore, hypoxia-inducible factor 1 alpha protein is constantly synthesized and undergoes proteasomal degradation in normal conditions. However, metabolic stress or hypoxia stabilizes the expression of hypoxia-inducible factor 1 alpha leading to the transcription of genes that reprogram cellular metabolism. This study demonstrates that treatment of mice with bortezomib stabilizes the expression of hypoxia-inducible factor 1 alpha. Moreover, knockdown of hypoxia-inducible factor 1 alpha, inhibition of hypoxia-inducible factor 1 alpha binding to its response element, or limiting its translation by using metformin prevent the development of bortezomib-induced neuropathic pain. Strikingly, the blockade of hypoxia-inducible factor 1 alpha expression does not attenuate mechanical allodynia in mice with existing bortezomib-induced neuropathic pain. These results establish the stabilization of hypoxia-inducible factor 1 alpha expression as the molecular mechanism by which bortezomib initiates chemotherapy-induced painful peripheral neuropathy. Crucially, these findings reveal that the initiation and maintenance of bortezomib-induced neuropathic pain are regulated by distinct mechanisms. |
format | Online Article Text |
id | pubmed-6509977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-65099772019-05-17 Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy Ludman, Taylor Melemedjian, Ohannes K Mol Pain Research Article Chemotherapy-induced painful peripheral neuropathy is a significant clinical problem that is associated with widely used chemotherapeutics. Unfortunately, the molecular mechanisms by which chemotherapy-induced painful peripheral neuropathy develops have remained elusive. The proteasome inhibitor, bortezomib, has been shown to induce aerobic glycolysis in sensory neurons. This altered metabolic phenotype leads to the extrusion of metabolites which sensitize primary afferents and cause pain. Hypoxia-inducible factor alpha is a transcription factor that is known to reprogram cellular metabolism. Furthermore, hypoxia-inducible factor 1 alpha protein is constantly synthesized and undergoes proteasomal degradation in normal conditions. However, metabolic stress or hypoxia stabilizes the expression of hypoxia-inducible factor 1 alpha leading to the transcription of genes that reprogram cellular metabolism. This study demonstrates that treatment of mice with bortezomib stabilizes the expression of hypoxia-inducible factor 1 alpha. Moreover, knockdown of hypoxia-inducible factor 1 alpha, inhibition of hypoxia-inducible factor 1 alpha binding to its response element, or limiting its translation by using metformin prevent the development of bortezomib-induced neuropathic pain. Strikingly, the blockade of hypoxia-inducible factor 1 alpha expression does not attenuate mechanical allodynia in mice with existing bortezomib-induced neuropathic pain. These results establish the stabilization of hypoxia-inducible factor 1 alpha expression as the molecular mechanism by which bortezomib initiates chemotherapy-induced painful peripheral neuropathy. Crucially, these findings reveal that the initiation and maintenance of bortezomib-induced neuropathic pain are regulated by distinct mechanisms. SAGE Publications 2019-05-09 /pmc/articles/PMC6509977/ /pubmed/31041875 http://dx.doi.org/10.1177/1744806919850043 Text en © The Author(s) 2019 http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Research Article Ludman, Taylor Melemedjian, Ohannes K Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy |
title | Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy |
title_full | Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy |
title_fullStr | Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy |
title_full_unstemmed | Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy |
title_short | Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy |
title_sort | bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509977/ https://www.ncbi.nlm.nih.gov/pubmed/31041875 http://dx.doi.org/10.1177/1744806919850043 |
work_keys_str_mv | AT ludmantaylor bortezomibandmetforminopposinglyregulatetheexpressionofhypoxiainduciblefactoralphaandtheconsequentdevelopmentofchemotherapyinducedpainfulperipheralneuropathy AT melemedjianohannesk bortezomibandmetforminopposinglyregulatetheexpressionofhypoxiainduciblefactoralphaandtheconsequentdevelopmentofchemotherapyinducedpainfulperipheralneuropathy |