Cargando…
A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram
X-ray computed tomography and, specifically, time-resolved volumetric tomography data collections (4D datasets) routinely produce terabytes of data, which need to be effectively processed after capture. This is often complicated due to the high rate of data collection required to capture at sufficie...
Autores principales: | Bellos, Dimitrios, Basham, Mark, Pridmore, Tony, French, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510199/ https://www.ncbi.nlm.nih.gov/pubmed/31074449 http://dx.doi.org/10.1107/S1600577519003448 |
Ejemplares similares
-
Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models
por: Bellos, Dimitrios, et al.
Publicado: (2021) -
Convolutional Neural Networks for Automated Annotation of Cellular Cryo-Electron Tomograms
por: Chen, Muyuan, et al.
Publicado: (2017) -
3D deep convolutional neural network segmentation model for precipitate and porosity identification in synchrotron X-ray tomograms
por: Gaudez, S., et al.
Publicado: (2022) -
Soft X‐ray tomograms provide a structural basis for whole‐cell modeling
por: Loconte, Valentina, et al.
Publicado: (2022) -
Object reconstruction from focused positron tomograms
por: Townsend, D, et al.
Publicado: (1978)