Cargando…

Fabrication of fillable microparticles and other complex 3D microstructures

Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and...

Descripción completa

Detalles Bibliográficos
Autores principales: McHugh, Kevin J., Nguyen, Thanh D., Linehan, Allison R., Yang, David, Behrens, Adam M., Rose, Sviatlana, Tochka, Zachary L., Tzeng, Stephany Y., Norman, James J., Anselmo, Aaron C., Xu, Xian, Tomasic, Stephanie, Taylor, Matthew A., Lu, Jennifer, Guarecuco, Rohiverth, Langer, Robert, Jaklenec, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510330/
https://www.ncbi.nlm.nih.gov/pubmed/28912242
http://dx.doi.org/10.1126/science.aaf7447
_version_ 1783417404926197760
author McHugh, Kevin J.
Nguyen, Thanh D.
Linehan, Allison R.
Yang, David
Behrens, Adam M.
Rose, Sviatlana
Tochka, Zachary L.
Tzeng, Stephany Y.
Norman, James J.
Anselmo, Aaron C.
Xu, Xian
Tomasic, Stephanie
Taylor, Matthew A.
Lu, Jennifer
Guarecuco, Rohiverth
Langer, Robert
Jaklenec, Ana
author_facet McHugh, Kevin J.
Nguyen, Thanh D.
Linehan, Allison R.
Yang, David
Behrens, Adam M.
Rose, Sviatlana
Tochka, Zachary L.
Tzeng, Stephany Y.
Norman, James J.
Anselmo, Aaron C.
Xu, Xian
Tomasic, Stephanie
Taylor, Matthew A.
Lu, Jennifer
Guarecuco, Rohiverth
Langer, Robert
Jaklenec, Ana
author_sort McHugh, Kevin J.
collection PubMed
description Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types ofmicrostructures that can be formed.We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.
format Online
Article
Text
id pubmed-6510330
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-65103302019-05-30 Fabrication of fillable microparticles and other complex 3D microstructures McHugh, Kevin J. Nguyen, Thanh D. Linehan, Allison R. Yang, David Behrens, Adam M. Rose, Sviatlana Tochka, Zachary L. Tzeng, Stephany Y. Norman, James J. Anselmo, Aaron C. Xu, Xian Tomasic, Stephanie Taylor, Matthew A. Lu, Jennifer Guarecuco, Rohiverth Langer, Robert Jaklenec, Ana Science Materials Science Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types ofmicrostructures that can be formed.We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives. American Association for the Advancement of Science 2017-09-15 2017 /pmc/articles/PMC6510330/ /pubmed/28912242 http://dx.doi.org/10.1126/science.aaf7447 Text en © The Author(s) 2017 http://creativecommons.org/licenses/by/4.0/ This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
spellingShingle Materials Science
McHugh, Kevin J.
Nguyen, Thanh D.
Linehan, Allison R.
Yang, David
Behrens, Adam M.
Rose, Sviatlana
Tochka, Zachary L.
Tzeng, Stephany Y.
Norman, James J.
Anselmo, Aaron C.
Xu, Xian
Tomasic, Stephanie
Taylor, Matthew A.
Lu, Jennifer
Guarecuco, Rohiverth
Langer, Robert
Jaklenec, Ana
Fabrication of fillable microparticles and other complex 3D microstructures
title Fabrication of fillable microparticles and other complex 3D microstructures
title_full Fabrication of fillable microparticles and other complex 3D microstructures
title_fullStr Fabrication of fillable microparticles and other complex 3D microstructures
title_full_unstemmed Fabrication of fillable microparticles and other complex 3D microstructures
title_short Fabrication of fillable microparticles and other complex 3D microstructures
title_sort fabrication of fillable microparticles and other complex 3d microstructures
topic Materials Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510330/
https://www.ncbi.nlm.nih.gov/pubmed/28912242
http://dx.doi.org/10.1126/science.aaf7447
work_keys_str_mv AT mchughkevinj fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT nguyenthanhd fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT linehanallisonr fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT yangdavid fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT behrensadamm fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT rosesviatlana fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT tochkazacharyl fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT tzengstephanyy fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT normanjamesj fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT anselmoaaronc fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT xuxian fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT tomasicstephanie fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT taylormatthewa fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT lujennifer fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT guarecucorohiverth fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT langerrobert fabricationoffillablemicroparticlesandothercomplex3dmicrostructures
AT jaklenecana fabricationoffillablemicroparticlesandothercomplex3dmicrostructures