Cargando…

[Image: see text] Robust CT ventilation from the integral formulation of the Jacobian

Computed tomography (CT) derived ventilation algorithms estimate the apparent voxel volume changes within an inhale/exhale CT image pair. Transformation‐based methods compute these estimates solely from the spatial transformation acquired by applying a deformable image registration (DIR) algorithm t...

Descripción completa

Detalles Bibliográficos
Autores principales: Castillo, Edward, Castillo, Richard, Vinogradskiy, Yevgeniy, Dougherty, Michele, Solis, David, Myziuk, Nicholas, Thompson, Andrew, Guerra, Rudy, Nair, Girish, Guerrero, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510605/
https://www.ncbi.nlm.nih.gov/pubmed/30779353
http://dx.doi.org/10.1002/mp.13453
_version_ 1783417443956293632
author Castillo, Edward
Castillo, Richard
Vinogradskiy, Yevgeniy
Dougherty, Michele
Solis, David
Myziuk, Nicholas
Thompson, Andrew
Guerra, Rudy
Nair, Girish
Guerrero, Thomas
author_facet Castillo, Edward
Castillo, Richard
Vinogradskiy, Yevgeniy
Dougherty, Michele
Solis, David
Myziuk, Nicholas
Thompson, Andrew
Guerra, Rudy
Nair, Girish
Guerrero, Thomas
author_sort Castillo, Edward
collection PubMed
description Computed tomography (CT) derived ventilation algorithms estimate the apparent voxel volume changes within an inhale/exhale CT image pair. Transformation‐based methods compute these estimates solely from the spatial transformation acquired by applying a deformable image registration (DIR) algorithm to the image pair. However, approaches based on finite difference approximations of the transformation's Jacobian have been shown to be numerically unstable. As a result, transformation‐based CT ventilation is poorly reproducible with respect to both DIR algorithm and CT acquisition method. PURPOSE: We introduce a novel Integrated Jacobian Formulation (IJF) method for estimating voxel volume changes under a DIR‐recovered spatial transformation. The method is based on computing volume estimates of DIR mapped subregions using the hit‐or‐miss sampling algorithm for integral approximation. The novel approach allows for regional volume change estimates that (a) respect the resolution of the digital grid and (b) are based on approximations with quantitatively characterized and controllable levels of uncertainty. As such, the IJF method is designed to be robust to variations in DIR solutions and thus overall more reproducible. METHODS: Numerically, Jacobian estimates are recovered by solving a simple constrained linear least squares problem that guarantees the recovered global volume change is equal to the global volume change obtained from the inhale and exhale lung segmentation masks. Reproducibility of the IJF method with respect to DIR solution was assessed using the expert‐determined landmark point pairs and inhale/exhale phases from 10 four‐dimensional computed tomographies (4DCTs) available on http://www.dir-lab.com. Reproducibility with respect to CT acquisition was assessed on the 4DCT and 4D cone beam CT (4DCBCT) images acquired for five lung cancer patients prior to radiotherapy. RESULTS: The ten Dir‐Lab 4DCT cases were registered twice with the same DIR algorithm, but with different smoothing parameter. Finite difference Jacobian (FDJ) and IFJ images were computed for both solutions. The average spatial errors (300 landmarks per case) for the two DIR solution methods were 0.98 (1.10) and 1.02 (1.11). The average Pearson correlation between the FDJ images computed from the two DIR solutions was 0.83 (0.03), while for the IJF images it was 1.00 (0.00). For intermodality assessment, the IJF and FDJ images were computed from the 4DCT and 4DCBCT of five patients. The average Pearson correlation of the spatially aligned FDJ images was 0.27 (0.11), while it was 0.77 (0.13) for the IFJ method. CONCLUSION: The mathematical theory underpinning the IJF method allows for the generation of ventilation images that are (a) computed with respect to DIR spatial accuracy on the digital voxel grid and (b) based on DIR‐measured subregional volume change estimates acquired with quantifiable and controllable levels of uncertainty. Analyses of the experiments are consistent with the mathematical theory and indicate that IJF ventilation imaging has a higher reproducibility with respect to both DIR algorithm and CT acquisition method, in comparison to the standard finite difference approach.
format Online
Article
Text
id pubmed-6510605
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-65106052019-11-15 [Image: see text] Robust CT ventilation from the integral formulation of the Jacobian Castillo, Edward Castillo, Richard Vinogradskiy, Yevgeniy Dougherty, Michele Solis, David Myziuk, Nicholas Thompson, Andrew Guerra, Rudy Nair, Girish Guerrero, Thomas Med Phys QUANTITATIVE IMAGING AND IMAGE PROCESSING Computed tomography (CT) derived ventilation algorithms estimate the apparent voxel volume changes within an inhale/exhale CT image pair. Transformation‐based methods compute these estimates solely from the spatial transformation acquired by applying a deformable image registration (DIR) algorithm to the image pair. However, approaches based on finite difference approximations of the transformation's Jacobian have been shown to be numerically unstable. As a result, transformation‐based CT ventilation is poorly reproducible with respect to both DIR algorithm and CT acquisition method. PURPOSE: We introduce a novel Integrated Jacobian Formulation (IJF) method for estimating voxel volume changes under a DIR‐recovered spatial transformation. The method is based on computing volume estimates of DIR mapped subregions using the hit‐or‐miss sampling algorithm for integral approximation. The novel approach allows for regional volume change estimates that (a) respect the resolution of the digital grid and (b) are based on approximations with quantitatively characterized and controllable levels of uncertainty. As such, the IJF method is designed to be robust to variations in DIR solutions and thus overall more reproducible. METHODS: Numerically, Jacobian estimates are recovered by solving a simple constrained linear least squares problem that guarantees the recovered global volume change is equal to the global volume change obtained from the inhale and exhale lung segmentation masks. Reproducibility of the IJF method with respect to DIR solution was assessed using the expert‐determined landmark point pairs and inhale/exhale phases from 10 four‐dimensional computed tomographies (4DCTs) available on http://www.dir-lab.com. Reproducibility with respect to CT acquisition was assessed on the 4DCT and 4D cone beam CT (4DCBCT) images acquired for five lung cancer patients prior to radiotherapy. RESULTS: The ten Dir‐Lab 4DCT cases were registered twice with the same DIR algorithm, but with different smoothing parameter. Finite difference Jacobian (FDJ) and IFJ images were computed for both solutions. The average spatial errors (300 landmarks per case) for the two DIR solution methods were 0.98 (1.10) and 1.02 (1.11). The average Pearson correlation between the FDJ images computed from the two DIR solutions was 0.83 (0.03), while for the IJF images it was 1.00 (0.00). For intermodality assessment, the IJF and FDJ images were computed from the 4DCT and 4DCBCT of five patients. The average Pearson correlation of the spatially aligned FDJ images was 0.27 (0.11), while it was 0.77 (0.13) for the IFJ method. CONCLUSION: The mathematical theory underpinning the IJF method allows for the generation of ventilation images that are (a) computed with respect to DIR spatial accuracy on the digital voxel grid and (b) based on DIR‐measured subregional volume change estimates acquired with quantifiable and controllable levels of uncertainty. Analyses of the experiments are consistent with the mathematical theory and indicate that IJF ventilation imaging has a higher reproducibility with respect to both DIR algorithm and CT acquisition method, in comparison to the standard finite difference approach. John Wiley and Sons Inc. 2019-03-22 2019-05 /pmc/articles/PMC6510605/ /pubmed/30779353 http://dx.doi.org/10.1002/mp.13453 Text en © 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle QUANTITATIVE IMAGING AND IMAGE PROCESSING
Castillo, Edward
Castillo, Richard
Vinogradskiy, Yevgeniy
Dougherty, Michele
Solis, David
Myziuk, Nicholas
Thompson, Andrew
Guerra, Rudy
Nair, Girish
Guerrero, Thomas
[Image: see text] Robust CT ventilation from the integral formulation of the Jacobian
title [Image: see text] Robust CT ventilation from the integral formulation of the Jacobian
title_full [Image: see text] Robust CT ventilation from the integral formulation of the Jacobian
title_fullStr [Image: see text] Robust CT ventilation from the integral formulation of the Jacobian
title_full_unstemmed [Image: see text] Robust CT ventilation from the integral formulation of the Jacobian
title_short [Image: see text] Robust CT ventilation from the integral formulation of the Jacobian
title_sort [image: see text] robust ct ventilation from the integral formulation of the jacobian
topic QUANTITATIVE IMAGING AND IMAGE PROCESSING
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510605/
https://www.ncbi.nlm.nih.gov/pubmed/30779353
http://dx.doi.org/10.1002/mp.13453
work_keys_str_mv AT castilloedward imageseetextrobustctventilationfromtheintegralformulationofthejacobian
AT castillorichard imageseetextrobustctventilationfromtheintegralformulationofthejacobian
AT vinogradskiyyevgeniy imageseetextrobustctventilationfromtheintegralformulationofthejacobian
AT doughertymichele imageseetextrobustctventilationfromtheintegralformulationofthejacobian
AT solisdavid imageseetextrobustctventilationfromtheintegralformulationofthejacobian
AT myziuknicholas imageseetextrobustctventilationfromtheintegralformulationofthejacobian
AT thompsonandrew imageseetextrobustctventilationfromtheintegralformulationofthejacobian
AT guerrarudy imageseetextrobustctventilationfromtheintegralformulationofthejacobian
AT nairgirish imageseetextrobustctventilationfromtheintegralformulationofthejacobian
AT guerrerothomas imageseetextrobustctventilationfromtheintegralformulationofthejacobian