Cargando…
Predicting the decision making chemicals used for bacterial growth
Predicting the contribution of media components to bacterial growth was first initiated by introducing machine learning to high-throughput growth assays. A total of 1336 temporal growth records corresponding to 225 different media, which were composed of 13 chemical components, were generated. The g...
Autores principales: | Ashino, Kazuha, Sugano, Kenta, Amagasa, Toshiyuki, Ying, Bei-Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510730/ https://www.ncbi.nlm.nih.gov/pubmed/31076576 http://dx.doi.org/10.1038/s41598-019-43587-8 |
Ejemplares similares
-
Machine learning-assisted discovery of growth decision elements by relating bacterial population dynamics to environmental diversity
por: Aida, Honoka, et al.
Publicado: (2022) -
A decay effect of the growth rate associated with genome reduction in Escherichia coli
por: Tsuchiya, Kouhei, et al.
Publicado: (2018) -
The physics of bacterial decision making
por: Ben-Jacob, Eshel, et al.
Publicado: (2014) -
Use of QSARs in international decision-making frameworks to predict health effects of chemical substances.
por: Cronin, Mark T D, et al.
Publicado: (2003) -
Access to Chemical Data Used in Regulatory Decision Making
por: Goldman, Lynn R., et al.
Publicado: (2013)