Cargando…
Contaminated feed-borne Bacillus cereus aggravates respiratory distress post avian influenza virus H9N2 infection by inducing pneumonia
Avian influenza virus subtype H9N2 is identified in chickens with respiratory disease while Bacillus cereus (B. cereus) has been frequently isolated from chicken feed in China. However, the roles of co-infection with these two pathogens remain unclear. In the present study, SPF chicks were intragast...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510747/ https://www.ncbi.nlm.nih.gov/pubmed/31076729 http://dx.doi.org/10.1038/s41598-019-43660-2 |
Sumario: | Avian influenza virus subtype H9N2 is identified in chickens with respiratory disease while Bacillus cereus (B. cereus) has been frequently isolated from chicken feed in China. However, the roles of co-infection with these two pathogens remain unclear. In the present study, SPF chicks were intragastrically administered with 10(8) CFU/mL of B. cereus for 7 days and then inoculated intranasally with 100 EID(50) of H9N2 three days later. Alternatively, chickens were initially inoculated with H9N2 and then with B. cereus for one week. Post administration, typical respiratory distress persisted for 5 days in both co-infection groups. Gizzard erosions developed in the groups B. cereus/H9N2 and B. cereus group on 7(th) day while in group H9N2/B. cereus on 14(th) day. More importantly, both air-sac lesions and lung damage increased significantly in the co-infection group. Significant inflammatory changes were observed in the B. cereus group from day 7 to day 21. Moreover, higher loads of H9N2 virus were found in the co-infected groups than in the H9N2 group. Newcastle Disease Virus (NDV) specific antibodies were decreased significantly in the H9N2/B. cereus group compared to the B. cereus and the B. cereus/H9N2 groups. Nonspecific IgA titers were reduced significantly in the B. cereus group and the H9N2/B. cereus group compared to the control group. In addition to this, lower lymphocyte proliferation was found in the con-infection groups and the H9N2 group. Hence, feed-borne B. cereus contamination potentially exacerbates gizzard ulceration and aggravates H9N2-induced respiratory distress by inhibiting antibody-mediated immunity and pathogen clearance. Thus controlling the B. cereus contamination in poultry feed is immediately needed. |
---|